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1. INTRODUCTION 

In this paper, we will obtain closed form expressions for certain series involving hyperbolic secants and co-
secants, in terms of complete elliptic integrals of the first and second kind. By specializing, we will obtain 
closed form expressions for series involving the reciprocals of the well known Fibonacci and Lucas sequences, 
thereby indicating how similar series for related sequences may be evaluated. Also, we will derive some elegant 
symmetrical relationships, which enable numerical evaluation of such series with a high degree of precision. 

2. REVIEW 

We will begin by recalling some of the basic definitions and properties of Jacobian elliptic function theory 
which are relevant to the topic of this paper. The notation used will be that found in [1 ] ; the formulas quoted 
in this section are also taken from [1 ] , for the most part, or in some cases from [2] , with revised notation. 

(1) u = ufrp,m)= f (1-ms\n2 dr1/2d6 . 
0 

The angle ^ is called amplitude, and we write 

(2) if = am u. 

In this paper, we will restrict y to the two values 0 and TI 12, and m to the open interval (0,1). Note that, in 
this domain of definition, u is a non-negative real number, and that lim u(n/2, m) = °°. 

m -> 1~ 

(3) K = K(m) = uM2, m); K' = K'(m) = u(n/2, 1 - m) = K(l-m). 
TT/2 

(4) E = E(m) = f (1 -m $\n2d)V2dd; E' = E(1 - m). 
0 

K and E are called the complete elliptic integrals of the first and second kind, respectively. 

(5) sn u = sin if ; 

(6) en u = cos^; 

(7) dn*/ = (1 ~mi\n2 y)V2. 

In (5)-(7) (as well as in the other nine Jacobian elliptic functions, which are derived from these, and not in-
dicated here), if we wish to draw attention to the dependence of the function upon the parameters, we write 
sn (u\m) forsn u, etc. 

For the values of«/? with which we are concerned in this paper, we obtain the following relations: 

(8) sn K = 1; en 0 = dn 0 = 1; dn K = (1 - m)V\ 

We observe from the definition of K(m) that it is a monotonic increasing (continuous) mapping of (0,1) on-
to (u/2, oo); it then follows that the functionsx and y defined by: 

(9) x = x(m) = itK'(m)/K(m), and y = y(m) = nK(m)/K'(m), 

are one-to-one mappings of (0,1) onto (0,<~). (The notation introduced in (9) is not standard). 
293 
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We also make the following definitions: 

(10) q = exp (-TTK'/K) = e~x; V = TTU/2K. 

In view of the preceding discussion, we see that 0 < q < 1; moreover, for the two admissible values of <p 
which we allow, we obtain two possible triplets (u,v,$), namely: (0,0,0) and (K, n/2, n/2). 

So-called ^-series expansions for the functions given in (3)-(7) exist, as well as for some related functions 
which we will consider, and these are simply listed below: 

°° -4-1/ 

(11) sn</ = -I?- T, q" sm(2n+1)v; 

(12) cnu = -£*- Y. —2 zos(2n+1)v; 
m'AK „=0 1+q2n+l 

(13) dnw = TT/2K + 2TT/K Y, —2 cos 2nv ; 

n=l 1 + Q2n 

(14) (K/ir)2 dn2 u - (KEI/ir2 = 2 £ —S3l- cos 2nv; 
n=l 1-Q2n 

(15) %{2- mHKM2 - 4(KE)/n2 + 1/3 = 8 Y\ -M^L ; 
J _Y 7 _ n

2n 

n-1 I H 

(16) 1~4(KE)/n2 = 8 T (=li!!n3. 

n=l / 

nng2n 

2n 

(17) -1/16\oq(1-m)= £ ^ 
n=i (2n-l)(1-q4n-2) 

3. CLOSED FORMS 

If, in (11)-(14), we substitute the special values oft/ and v indicated in the paragraph following (10), we 
eliminate the trigonometric terms occurring in these identities. We may also make the substitution indicated in 
(10), and if appropriate, extend the summation variable over all integral values. The result of these manipula-
tions is.the following list of identities: 

(18) 2 E (- D"'1 csch (n - 1/2)x = ] £ sech (n - 1/2)x = 2Km*/*; 
n=l n=—°° 

(19) Yl sechnx = 2K/lT' 
n=—°° 

(20) ] T (- 1)n sech nx = 2K(1 - m)V2/n; 

(21) ] T n csch nx = K(K- E)/rr2 

n=l 
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(22) X (~ V"'1/! csch nx = KE/TT2 -(1- m)(K/u)2 . 
n=l 

Since 0 < q < 1, the following series manipulations are valid: 
2j-l 

JH. X X nqW* = E X nqW)" = £ - ^ 
w= j 7 - ? 2 n

 w " y = i ' j=1 n=1 ' j=l (l-q2!-1)2 

that is, 

X n csch nx = 1/2 X csch2(n - 1/2)x. 
n=l n=l 

In a similar manner, we may prove the following identities: 

X (-U^n csch nx = 1/2 X sech2 (n - %)x; 
n=l n=l 

n=l I - q n=l 

\n-1 2n 
X <-*rWn = y4 £ sech 2 ™. 
n=l 1~q2n

 n=l 

Incorporating these results into (15), (16), (21) and (22), we obtain: 

(23) X sech2™ - 4KE/TT2 ; 

n=—°° 

(24) X c s c h 2 nx = 1/6 + 2/3 (2 - m)(K/u)2 - 2KE/IT2 ; 
n=l 

(25) X 2n csch nx = X csch2 (n - 1/2)x = 2K(K- E)/n2 ; 
n=l n=l 

(26) X 2(- l ^ n csch nx = X sech2^ - ^ x - 2KE/<n2 - 2(1 - m)(K/ir)2. 
n=l n=l 

Finally, equation (17) may be recast as follows: 

(27) £ c s c h f ~ 1>x = -1/8 log (1-m). 
n=l 2 n ~ 1 

The results with which we are interested are (18)—(20) and (23)—(27). These are all identities in the implicit 
parameter m. However, we may also view them as identities in the summand parameters, since m, and there-
fore K(m), K'(m) and E(m) are uniquely determined by (9), for any given positives. In this sense, then, (18)-
(20) and (23)—(27) represent closed form expressions for the indicated series, where the sums are expressed as 
implicit functions of x. 

As a matter of interest, we include below two identities free of terms involving m, derived by inspection of 
(18), (19) and (23)-(26): 
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(28) £ (sech2nx + csch2nx) = -1/3+1/31 £ sech/?x 1 -1/61 £ sech fo -^x \,Vx?0. 
n=l \ n=-°° I \ n=-°° * 

OO / OO \ Z 

(29) X fsech2 ^ - %)* + csch2 ^ " *M = I Z sech (n~1/2)x\ , Vx / 0. 

4. APPLICATIONS TO SERIES INVOLVING RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS 

Consider the sequence {Un)lQ of non-negative integers defined by the recursion: 

(30) Un+2 = aUn+1+bUn, n = 0, 1,2, - , 
where a, b, UQ and U i are given non-negative integers, with a and b not both zero, UQ and U± not both zero. 
It is known from the theory of linear difference equations that an explicit formula for Un exists, given by: 

(31) Un = UtGn + bUoGn-i, n = 1,2,3, -, 
where 

rn .ft 
(32) Gn = r ~s , n = 0, 1,2, •- , 

r- s 
and 
(33) r = 1Ma + sja2 +4b), s = "Ma- ^Ja2 +4b) . 

Note that r > 0. If, in particular, b = 1, and if we let L = log r, then Gn takes a form which is of interest to 
the topic of this paper. Specifically, 

(34) G2n = , 2 sinh 2nL, G2n+l = , 2 cosh (2n + 1)L, n = 0,1,2, - . 
y/a2+4 sJa2+4 

Thus, for certain special values of a, UQ and Ui, we see that the identities of the previous section may be used 
to obtain closed form expressions for series involving the reciprocals of our particularsequence {Un}. 

We illustrate with a specific example, by taking a = b = 1. Then let 

(35) a = r = 1/2(1+sj5), j3 = s = 1Ml - V5 ) , X = £ = loga. 
The sequence {Gn} then becomes the familiar Fibonacci sequence {Fn}; using (34), we see that the general 
term of this sequence is given by: 

(36) F2n = 2/^/5 sinh 2n\ F2n+i = 2/^5 cosh (2n + 1)\, n = 0,1, - . 
If we take U'Q = 0, Ui = 1 as initial values, then the sequence {Un} coincides with \Fnf. If we take UQ = 2, 
Ui = 1, the resulting sequence is the Lucas sequence {/.„}, whose general term is as follows: 

(37) L2n =2 cosh 2n\ L2n+1 = 2 sinh (2n + 1)\ n = 0, 1, - . 
If, in definition (9), we \s\x = 2\, this determines a unique constant/i, such that 0 < jU< 1, and 

(38) uK'(}i)/K(ii) = 2\. 

Also, let p = K(id)/n, o= E([JL)/TT. For this particular value of*, we may then use (18)—(20), (23)-(27) and 
(36)—(38) to obtain the following closed-form expressions: 

(39) £ (-r^ = V*PS ; 

(40) £ ir— = tyJsH: 
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(42) 

(41) £ -r- = %P-%: 

E ^ r ^ - = * - KpJi^T ; 

(43) X) ( r M = »pa- ?/<?/ 

(44) U [^-] = & ^ t f . ^ . ^ p a ; 

(45) £ -p̂ - = %yj5pip-a); 
n=i F2« 

(46) ^ (j-1-)2 ^Pip-oi.-

(47) E (-=1f^L = ^JS{pa-(1-n)p2); 
»=i F2n 

£(^) (48) X f ^ - f = l(po-(1-n)p2); 

(49) £ 7 O - - 7 7 P = -s/5/16 log f 7 - ^ . 
^ r/n - VF4„_2 

Since all the series in (39)-(49) are absolutely convergent, we may obtain other formulas by combinations 
of the foregoing expressions. For example, if we alternately add and subtract (41) and (42), we obtain: 

(50) £ f-L- = %(1-sfT^jilp, 
n=l ~4n'2 

and 

(51) S ]
1 - %(1+jl-n)p-i 

A similar process on (45) and (47) yields the pair of identities: 

(52) f T^1 = ̂ 5MP2 ; 
n = l F^2 

(53) *Z ^L = %J~5 {(2 - u)p2 - 2po] 

Adding (43) and (46) yields: n~1 

(54) f 4 = y*P2 ~ 1/8-
n=l L2 
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Adding (44) and (48) yields: 
oo 

(55) E Jr = S +i-(2u~Vp2. 
n—1 rn 

Inspection of the preceding list of closed form expressions yields a variety of interesting identities, some of 
which are shown below: 

° ° oo / o o \ 2 i oo \ / o o \ 

(56) 3 £ ±+S E -j=4(j: -L-) =80 Z 7f ( E T7-)-5^2--

(57) \i-+s*ir'\\-ft3'si"2' 
n=l h2n-l n=l L2n-1 \n=l Z n l ' 

The Lucas sequence may be extended to negative indices, by the following definition, which is consistent 
with the definition in (37): 
(58) L.n = (-1)nLn, n = 0, 1,2,-. 

Using (58), we obtain the following elegant identity: 
oo V 2 

(59) E ~, = ( E rM =P2-
oo . oo V Z 

« - » L 2 \„=-oo ^ n / 
Note 

y 

One more identity is worth including, namely: 

(LbJL) (60) E To 777 = ^ ' o f l i 
M=i (2n-1)L2n,1 \1-yM 

This does not follow from any previous identity in this section, though similar to (49). The proof of (60) 
depends upon a general theorem about elliptic functions, which properly does not belong in this section; it is 
nevertheless instructive to include it here, illustrating how the basic identities in (18)—(20) and (23)—(27) 
may be made to yield other identities not previously covered. 

Theorem. Suppose 2K'(m1)/K(m1) = K'(m2)/K(m2). 
Then: 

(a) Kfmjt) = (l+^]m~2)K(m2); 
(b) K'(ml)=

1/2(1 + y/mJ)K'(m2); 

4s/mJ (c) mi = 1 
1 - 4mJ \2 _ 
1 + ^JtrTz ) (<! + KT2)2 

(d) E/(mi) = E<(m2) + ̂ r2K'(m2) . 

1 + 4™~2 

, . r, , 2E(m2)-(1-m2)K(m2) 
(e) Efmi) = —zr — • 

1+y/m2 

Proof of (a). Let A- = nK'fmiJ/Kfmi). Observing that the series in (18) and (19) are absolutely con-
vergent (this is actually true for all of the series in (18)—(20), (23)—(27)), provided, of course, x is real and 
non-zero, the following manipulation is valid: 
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£ sech 2nx + ]£] sech (2n - 1)x = ^ sech nx. 

Using (18), (19) and the hypothesis, this is equivalent to the following relation: 
2- K(m2)+

 2- mfK(m2) = 2- K(mt). 
This implies (a). TT TT TT 

Proof of (b): An immediate consequence of (a) and the hypothesis. 

Proof of (c): The following is Formula 17.3.29 in [1 ] , slightly modified: 

K(m) = ^ K 
1 + <J1 - m 

Replacing/77 by 1 - m2 yields: 

[\1 + sjm~2 I 
K'(m2) = 4 = K 

1 + sfm^ 
Substituting this result into (b) yields: 

2 

K'(mt) = Kd-mt) = K\( 1 ~ ^ \ \ . 
IV1+ sfm2 1 I 

This result and the fact that K is a one-to-one function on (0,1) imply (c). 

Ptoofof(d): The following is Formula 17.3.30 in [1 ] , slightly modified: 

E(m) = (1^JT^)E\(1--JJ^^\ I- V ^ T K\(l=J^\\ 
\\UsJ1-m I I 1 + s/T=~^ \\1 + y/1-m ) \ 

Replacingm by 1 - m2 and incorporating the results of (b) and (c) yields: 

E'(m2) = (7 + y/mt)EUm1)-yJm^K'fm2). 
Rearrangement yields (d). 

Proof of (e): The following is the famous relation due to Legendre: 

EK'+E'K-KK' = n/2, 

for any (implicit) parameter m. Letting m = mi and substituting the results of (a), (b) and (d) yields (e). This 
completes the proof of the theorem. 

If the constant jU^ is defined by: 
irK'fmJ/Kfmi = \, 

it follows from part (c) of the preceding theorem thatju^ is related tojuby the following identity: 

Hi = 1 

Equation (60) then follows from this last result, by substitutingx = \\x\ (27) and using (37). This same sub-
stitution in the other identities of Section 3, however, results either in series which have already been treated 
(by decomposition into even and odd terms), or in series whose terms contain irrational numbers. Therefore, 
if we are interested only in obtaining closed forms for series of rational numbers, identity (27) is the only 
identity in Section 3 which yields an "interesting" result forx = X. It would therefore appear that the theorem 
we have proved has very limited applicability. This is not the case, however, for if we solve for the functions 
of/772 in terms of the functions of m f, we obtain formulas for other "interesting" series not previously treated, 
in terms of the original parameter mi. Theoretically, this process may be continued indefinitely, but the 
closed forms thereby obtained will become increasingly cumbersome at each step. To illustrate, we set/77^ = \x 
in the theorem of this section, and define ix" by the relation: 
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itK'(ix")/K(ti") = 4X ; 

hence, p" plays the role of/7?2 in the theo rem. Also, let 

p" = K(p")/n and o" = E(p")/ir. 

Using the theorem, we may solve for the "double-primed" functions in terms of the unprimed functions, and 
obtain the following results: 

(61) VM77 = (1 ~ ^jT-^x)/<1 + y/T^H; /-//"= W-V - ; 
(l + y/1-H)2 

(62) p" = M + J1-p.fr; o" = (o + oJ1-n)/(1 + sJ1-ii) . 
If we substitute x = 4\ in (18) and apply (36) and (37), we obtain the formulas: 

s/5 n=1 F4n-2 ~ L4n~2 

Now using the results of (61) and (62), we obtain the identities: 

(63) £ (plll1^ xjsa-JFlJp ; 
n=l F4»-2 

(64) £ —i- = %(j - 4f~ix)p . 
n=l i4n'2 

Similarly, we may derive the following identities from the general ones of Section 3, by means of the same 
substitutions: 

(65) £ r-= %(1 + J1-»)p-% ; 
n=l 4n 

(66) £ hl]H = % _ ii(1 _ rfHp. 

(67) r - f = %(po + p2^T^I)- I ; 
><=1 L 4 n 

(68) £ -j = ̂ {lU2-p.)p2-6po} ; 
,i=l F4n 

(69) £ /£ = %y/5{(2-n)p2-2po} ; 

(70) £ _J_=f{tf-^p2-2pa} ; 
r'=y F4n-2 

(71) £ (-1)l'l4n = ^5(pa-p2^T^-); 

v 
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(72) E ~j— = 1^po-n2^1~ii) ; 
n=l l-4n^2 

Observe that (64) and (65) were previously derived, as indicated in (50) and (51), by a different method. 
Appropriate combinations of (64)—(72) yield the following identities (note that (78) and (79) were previously 
derived, as indicated in (43) and (44)): 

(74) | ^=|{/^-^}V*/ 

(75) t -J-.Ul-d-^p; 
n=1

 L8n-4 O 

(76) £ ^-= ¥4^1(1+ ^~H)2p2-4pa} ; 
n=l Fgn 

(77) £ ^Lzl = y4s/5(1 - jT^]I)2p2 ; 
n~l 

(78) Y, J- = %po- 1/8 ; 
r 2 
-2n 

n=l L2 

(79) E - f = -k {^4<2-n)p2~12po} 
n=l Fn 2n 

By letting x = 8\'m (18)—(20), (23)—(27), and again using the theorem of this section, we may derive yet 
another set of identities, involving the reciprocals of Fibonacci and Lucas numbers of indices 8n or 8n - 4 
(except for the identity derived from (27), which involves Ff^n_g)) the closed forms thereby derived are 
again functions of the three basic constants jU, p and o, albeit more complicated functions. Continuing in this 
fashion, we may, in theory, obtain closed forms for series involving the reciprocals of Fibonacci and Lucas 
numbers, where their indices have one of the two forms: 2 n or 2 (2n - 1). Note, however, that conspicu-
ously absent from the compendium of identities in this section are formulas for the series: 

E J1 -d f TJ-
n=l F*» n=l . L ^ l n=l 

It is seen, from (36) and (37), that these, in turn, depend on an evaluation of the series 

E csch/?^, 
n=l 

which is absent in Section 3. Such an evaluation does not appear to be provided by the elliptic function theory, 
however, and is, in fact, the subject of a separate section of this paper. 

Mention should be made of recent papers by Greig and Gould ([5] and [6]), where elementary techniques 
are used to obtain approximations to the series 
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n=l 
and to more general series. The most significant result to the topic of this paper appears in [5] and may be 
expressed in the following form: 

n=l n n=0 2n+1 4n+2 I 

This formula, however, does not yield a closed form, but only a rearrangement, of the terms in 

oo 

T.J-. 
n=l tn 

albeit one which yields fairly rapid convergence. 
It is clear how the formulas of this section may be extended to other sequences (Un) of the type discussed 

in the beginning of this section. It is not the aim of the author to obtain an indefinite number of identities 
such as are listed in this section, but rather to indicate the methods by which one may proceed in so doing. 

5. SYMMETRICAL RELATIONSHIPS 

Although the formulas of Section 3 (and their applications in Section 4) provide closed forms for the indi-
cated series, they are not very satisfactory from the point of view of numerical evaluation; manual computa-
tions of m (from (9), with given x), and of K(m) and E(m), even with the help of tables of elliptic integrals 
and related tables,can be quite cumbersome, and in any event cannot exceed the accuracy of tire tables. There 
is a much more satisfactory approach, fortunately, which enables the computation of/77, K and E with a high 
degree of precision and a minimum of effort. 

Recall the definitions o f * and]/ given in (9), and note that Ay = IT2. Note also that all of the Section 3 for-
mulas are valid if x is replaced by y, m replaced by (1 - m), K replaced by K\ and E replaced by £"' (see (3) 
and (4) for definitions of K' and £ 1 . However, K, K', E and f a r e not independent of each other, but rather 
satisfy the relations: 
(80) K' = KX/TT 

(a restatement of (9)), and 
(81) £ ' = 7T/2K+X/7T'(K-E) 

(a restatement of Legend re's relation, incorporating the result of (80); see proof of part (e) of Theorem in 
Section 4). 

By means of (80) and (81), we may express the formulas in Section 3 as functions o f / , with closed forms in 
terms aim, K and E. If we then equate these expressions with the original functions ofx, we obtain relations 
between functions of x and functions of / , which display a symmetry of some sort. We illustrate this method 
by deriving the following symmetrical relation: 

(82) \x\ 2 ^2 sech nx = \y\ Y] seen/7/, I/ real x,y such thatxy = nA 5Bbii / / / , v icdi A,y 5uuii u\aiAy - r 

fl——°° fi=—oa 

The proof of (82) follows from (19) and (80): 

Y, sech ny = 2KVTT = 2Kx/n2 = 2K/y = n/y J2 s e c h nx = fr/W^ £ sech nx, 

n '-
provided x,y are real positive numbers such that Ay = 7t . Note, however, that this result is independent of 
elliptic functions and is equally valid \ix and/ are both negative, because sech is an even function. This estab-
lishes (82). 
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An asymmetrical relation is obtained by applying this method to (18) and (20), which again yields a result 
which is independent of m, namely: 

(83) \x\/2 £ sech fa-/^ = \y\
1/2 £ (~VnSBchny (x,y rea\,xy = TT2). 

n=-°° n=-°° 

Similarly, we may derive the following formulas, where in all cases, x and y are arbitrary real numbers such 
XhdXxy = n : 

(84) E (-Vn~1 (nx csch nx+ny csch ny) = 1/2 ; 

(85) E { I*I s e c h 2 (" - 1/2>x + l^1 s e c h 2 (n -1/2)y) = 1 ; 
n=l 

(86) E |x| sech2nx = 2 + 4 E ny csch ny = 2 + E 2\y\ csch2 (n - 1/2)y ; 
n=-°° n=l n=l 

(87) E { M csch 2 / ? * * |y | csch 2,7j/} = ^ - - p i - / . 
n=i 

Aside from whatever elegance equations (82)—(87) possess, they are quite useful for numerical computa-
tions, for we may choose x in such a way that the series involving y converges with extreme rapidity. To see 
this better, we convert (82)—(87) to the forms which are more suitable for numerical computation, valid V 
real x £ 0: 

(88) E s e c h / 7 * - - ^ V s e c h / V / x ; 
n=-°° n=-°° 

(89) E Sech fo - #Jk = -£• T (-1)nsechnn2/x; 
n=~oo I* I „ 
n n=-°° 

(90) £ f-J^ncxhnx = -J-- 2- £ (-J)"'1/! cschmr2/x; 
n=l 2X X2

 n=l 

oo 2 °° 

(91) X ] s e c h 2 f a - ^ j x = -1~ - ?L E sech2 (n - ^ T T 2 A ; 
71 = i ^ 71= i 

(92) E seen2/?* = 2- + ^ L y n csch n<n2/\x\ = — * — E csch2 /̂? - %h2/x ; 
\x\ 2 ^ \x\ 2 ^ 

n=-°° X n=i X n-1 
00 2 2 °° 

(93) E csch2 nx = I - — * — - — E csch2/77r2A . 
n=l OX X n=l 

By choosing 0 < \x\ < n, the convergence of the series in the right members of (88)—(93) is at least as rapid 
as that which occurs when |*| = \y\ = TT, which is itself fairly rapid. If we require \x\ > n, we may then reverse 
the roles of x and y in (88)—(93), and still obtain rapid convergence, using the series in the left members to 
evaluate the required series. 



304 ON THE EVALUATION OF CERTAIN INFINITE SEQUENCES BY ELLIPTIC FUNCTIONS [DEC. 

6. NUMERICAL EVALUATION OF SERIES INVOLVING RECIPROCALS 
OF FIBONACCI AND LUCAS NUMBERS 

In this section, we will apply the results of the previous section toward numerical evaluation of the con-
stants ^i ,p and a defined by (38). We first need to compute X= log {14(1 + %/§)}. The computations indicated 
in this section were performed manually, with the help of tables found in [1 ] . In all cases, the accuracy does 
not exceed 15 significant digits. An electronic computer would attain far greater accuracy. 

(94) X = .48121 18250 59603, approximately. 

Substituting* = <?A (or* = IT /2\, where appropriate) in (88)—(93) yields, among others, the following iden-
tities: 

(95) £ - L = -% + it/Sk X sech/7/, where y = n2/2\ , 
n=l 2n n=-oo 

si 1 Yl==—°° 

(97) £ -J-=^-—2 £ ^cb2 fn-'Aly; 
n=l '2n-l n=-°° 

1991 £ -j- - - A' £ £ - 2 ^ 
n=l L2n~l oZ i\ n=-°° 

(100) ii-J^ + i t <**2<«-*»: 
Adding (97) and (98) yields: 

(101) £ ~ = 4 - —0 - —0 £ (sech2(n-y2)y + CsCh2ny). 
n=i F2 M 48\2 16\2 n=1 

Adding (99) and (100) yields: 

(102) £ - L = - ! + _ * _ £ (sech2ny + cscb2(n->/2)y). 
„=i L2

n
 8 32\2 X„ 

If we now compare the results of (41) and (95), we obtain: 

(103) p = | J sechflK. 
n=-°° 

Comparing (40) and (96) yields: 

(104) PN/M = ^ E (-Wxchny, 
71=-°° 

from which it follows that 
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(105) vfc = ( £ / - / r s e c h / j | A +1 £ s e c h ny\ 
\ n=~00 / \n=-°° I 

The values of p 2 and p can be obtained by squaring both sides of (103) and (105), respectively. An alterna-
tive approach is indicated below. Sf we compare (54) and (102), we obtain: 

2 °° 
(106) p2 = -JL_ £ fsech2/7j/ + csch2 (n - 1/2>y) . 

Combining (97) and (99) as indicated in (57) and comparing the results, we obtain: 
2 °° 

(107) up2 = - £ _ £ rsech2 ny - sech2 (n - V2)y) . 
16\ y,=^00 

It follows from (106) and (107) that we have: 

(108) p = ( Ts / r s e c h 2 / 7 y - s e c h 2 f / 7 - ^ m ( E ^sech2/?/ + csch2 (n - %)y) J . 
\ n=-°0 I \ n--°° ' 

Again, the computation of psj\ — \x may be accomplished from the values of p and p obtained in (103) and 
(108); a somewhat more accurate result is obtained, however, if we combine the results of (37), (42) and (83), 
which yields: 

(109) PVWT= j% E sech h ~ 1/2>Y • 

In the closed form expressions occurring in Section 4, we observe that the constant o always appears multi-
plied by p; therefore, we will indicate the numerical computation of pa, rather than of a itself. This is most 
easily accomplished by combining the results of (43) and (100), which yields: 

2 °° 
(110) p C T = ^ - + ^ L _ £ C s c h 2 f r - ^ j / . 

Superficially, it would appear that the identities in (103)—(110) are very unwieldy for computational pur-
poses. However, as mentioned previously, the infinite series in the right members of (103)—(110) converge 
quite rapidly; thus, at most eight terms of the series need be included to guarantee an accuracy in the result of 
15 significant digits! Moreover, since the summand terms are symmetrical about the value n = O, only four 
terms of the series, at most, need be computed for 15-digit accuracy! A summary of the computations is ap-
pended; indicated in Appendix II are the computed values of the series occurring in Section 4, using the con-
stants indicated in Appendix I. As a check on the computations, the actual summations were performed by 
the author with the aid of a desk calculator, and all results checked with those indicated in Appendix I I , to 15 
significant digits! It should be emphasized that the values in Appendix II were obtained without performing 
any actual summations. 

7. CONCLUSION 

As mentioned previously, the series 

E csch nx, 
n=l 

(x real and non-zero), apparently cannot be evaluated by elliptic functions. However, the following formula in 
terms of Lambert functions exists: 
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(111) £ ™chnx = 2{i(e-x)-i(e~2x)}, (x > 0), 
n=l 

where 

(112) Uq)= f; -£—. lql < 1, 
n=l 1-qn 

is the Lambert function. 

By decomposing (111) into even and odd-subscript terms, we may deduce the following formulas: 
oo 

(113) y ] csch 2nx = 2{i(e-2x) - i(e~4x')} ; 
n=l 

and 
oo 

(114) £ csch(2n- 1)x = 2{i(e~x)-2Ue-2x) + L(e~4x)}, where x > 0 . 
n=l 

In particular, setting* = X\n (113)—(114) and employing (36)—(37), we obtain the following formulas: 
oo 

(115) x -L = s/5{m2)-L(i54)}/ 
n=l h2n 

and 

(116) T -j-!— = I(-$)-2L($2) + L($4), where/3 is given in (35). 
n=l i 2 ^ 

These results are not new, and were generalized by Shannon and Horadam, as well as by Brady [3 ] . [4] . 
However, their results are in terms of Lambert functions, and it is this fact which the author finds unsatisfac-
tory, since the Lambert function is defined as an infinite series. Hence, we are using an infinite series to obtain 
the "closed form" sum of another infinite series; moreover, it is seen that (111) is little more than an algebraic 
identity, readily obtainable by manipulation of the definition in (112). It seems, therefore, that (111) is sim-
ply an artificiality, and another expression free of Lambert functions would be preferable. 

It is also worth mentioning that the technique of contour integration may be used to derive identities simi-
lar to those given in Section 5. We illustrate by deriving the following identity: 

(117) y sech nx - 111 = x- - I y (-U"'1 coth (n - 1/2)TT2/X VX y 0 
A n2„ 6x 4 TT *~* / 1/\2 

n=l n x n=± [n - V2) 
Let £ be the finite complex plane (z-plane), with z = u + iv, and consider the function f'-Q_^C_ given by: 

(118) Hz) = z~2 sech xz cot in, where x > rr. 

Let /?£ be the residue of f at its pole £. Note that fis meromorphic in C, with simple poles atun= n (n = ±1, 
±2, •••) and ivn = (n - 1/2)JT//X (n = 0, ±1, ±2, •••), and a pole of order 3 at the origin. Calculating the residues, 
we find: 

R = sech nx . /?. = cot fr/Vj = (-l)71'^ coth (n - 1/2)y 
Uyi r\ f It'-ft ry r\ ry > 

Tin -vnx sinh (xivn) (n - 1/2) TT 

where/ = IT /X; RQ is the coefficient of z in the Taylor series expansion of 

- sech XZ-TTZ cot TTZ = - (1 - 1Mxz)2 + -) ( 1 -
TT IT x 

(TTZ)" 

hence, R0 = -X2/2TT- TT/3 . 
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Now, let Rn be the rectangla bounded by the lines u = MN - %), v = ±N-n/x, and form the sequence 
(<&N)J. It is not difficult to show that secxz cot TIZ is uniformly bounded on 

from this, it follows that 

By the Cauchy Residue Theorem: 

U RN : 
N=l 

< 1 1 9 > ff(z)dz= £ *un+ E Bivn + no 
(RJV 0<\un\<N-V2 \vn\<N7T/x 

Allowing N to tend to «, in (119), we therefore obtain: 

' sech/7x " t-iin-l j2 <-irl^(n-^ = x2/2ll+7{/3 
n=^ nn2

 n=_oo (n-y2)2y 

where the first (primed) summation excludes the term for which n = 0. Multiplying throughout by n/2x and 
simplifying, we obtain (117). The following generalization of (117) is obtained similarly, by taking 

f(z) = z~ r sech xz cot irz, 

where r is a positive integer: 
\r+n (120) V sech nx + I V (~1) coth (n-V2)y 

n=i n2rx2r « n=l (n-V^y-1 

, T - (-V B2kE2r-2k 92k-1r~kk = n . 
f* (2k)/(2r-2k)f Z * Y " U ' 

here,/ = IT /x, and the #2&'s ar|d ^2fe's a r e Bernoulli and Euler numbers, respectively. 
Note that if we set r= 0 in (120), we obtain the apparent result: 

(121) V sech nx+^Y, (~1)n coth (n - %)y + y2 = 0. 
n=l n=l 

By manipulations similar to those employed after (22), we may show that, for all positive y, 

(122) J2 (-D71'1 coth (n-y2)y = y2 £ sech/?/. 
n^l n=-°° 

Incorporating this last result into (121) and simplifying, we obtain (88), which shows that (120) is also valid 
for r = 0, though this is seemingly not justifiable by the method of contour integration. The latter method 
apparently provides a richer variety of identities similar to those of Section 5 than does the method of elliptic 
functions; on the other hand, it does not provide closed forms for the indicated series, except for special val-
ues of A- and y. Thus, if we set* = y = it in (84), (85) and (87), we obtain the results: 

(123) T (-1)n-lncschnrr= ±- ; 
n=l 

(124) jr sech2 (n _ ,A)n = j_ 
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(125) ] T CSCh2/77T 
n=l 

± 
2-n 

Another important observation to make is that the identities given in this paper for real values ofx and y 
may, with certain further restrictions, be extended to the complex plane, thereby yielding results involving 
corresponding trigonometric expressions, instead of hyperbolic ones. This opens up a whole new area of ap-
proach, which is beyond the scope of this paper to explore. It suffices to say that there are ample avenues of 
research available, as suggested in this paper, as regards the series discussed. It is hoped that sufficient interest 
has been generated to warrant additional investigations into the indicated topics. 
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APPENDIX I 
X = .48121 18250 59603; 

TT/4X = 1.63212 56513 1825; 

y = TT2/2X = 10.25494 79118 337 . 

e1/2y = 168.59071 21406 95 ; 

ey = 28,422.82822 01066; 

TABLE OF CONSTANTS 

1/4X = .51952 17303 08757 ; 

TT2/16X2 = 2.66383 41416 9102; 

Jyl2 4,791,824.85068 042; 
e~2y = .00000 00012 37842 58468; 
e~3y = .00000 00000 00043 55099 975 ; 

e-7y/2 = .ooooooooooooooo25832; 
-4y .00000 00000 00000 00153; 

sechy/2 =.01186 26323 54457 871 
sech y = .00007 03659 74210 458 
sech 3y/2 = .00000 04173 77525 749 

sech 2y = .00000 00024 75685 169 

sech 5y/2 = .00000 00000 14684 588 

sech 3y = .00000 00000 00087 102 

Q-y = 
e-3y/2 

P~5yl2 

• .00593 15248 58649 77; 

.00003 51&29 87148 8 ; 
.00000 02086 88762 875 ; 

.00000 00000 07342 294 ; 

e-9y/2 = 0000Q 00000 00000 oooQ 

sech2 y/2 = .00014 07220 46377 031; 
sech2]/ = .00000 00049 51370 327 
sech2 3y/2 = .00000 00000 00174 204 

sech 22y = .00000 00000 00000 006 

sech2 5y/2 = .00000 00000 00000 000 
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APPENDIX I-(Cont'd.) 
sech 7y/2 = .00000 00000 00000 517 ; 
sech 4y = .00000 00000 00000 003 ; 
sech 9y/2 = .00000 00000 00000 000 . 

csch//? =.01186 3467109510403 
csch 3y/2 = .00000 04173 77525 749 
csch 5y/2 = .00000 00000 14684 588 

22 sech/?/ = 1.00014 07368 99965; 

cschz y/2 = .00014 07418 51858 435; 
csch2 3y/2 = .00000 00000 00174 204; 
csch2 5y/2 = .00000 00000 00000 000. 

X (~ Dn sech ny = .99985 92730 02775; 

22 sech (n - 1/2)y = .02372 60994 93337 4 ; 

22 sech2/?/ = 1,00000 00099 02741 ; 22 sech2 (n - %)y = .00028 14440 93102 469 ; 

22 csch2 (n - 1/2)y = .00028 14837 04065 278 . 

VJU = .99971 85757 09592; 
V 1 - M = .02372 27608 25520 2; 
(\-l±)-1/4= 6.49258 11249 7349; 
U = i / 2 { ( i_M)^ + ( i _ i L ( ) - ^ } = 3.32330 15370 7076. 

(\-liY 

= .99943 72306 18815; 
'= .15402 1949168033, 

log (1 +N/ / I ) = .69300 64585 13859 
VS"log (1 +v7I) = 1.54960 95500 8338; 
log*/ = 1.20095 87276 7835; 

p = 1.63235 53516 2277; 
pV5 = 3.65005 75296 6408; 
Px/1-iU =.03872 39755 88805 0; 
p(1-p) i / 4 = .25141 85529 91809. 

p2 = 2.66458 39939 7149; 
p2V5" = 5.95819 09422 7815; 
p V W t = -06321 12887 88495 2 ; 
pa = .52027 15562 09976; 

PV£ 
PN/5M 

pV^rr1 

P M 
pVv/5" 
p2x/5<r 
pojb 

M) 

^M) 

log (1 - VM> = -8.17564 70971 5135 ; 
V5 l o g d - v f c ) = -18.28130 26692 792 ; 
v^ log* / = 2.68542 53532 6045. 

= 1.63189 59671 7624; 
= 3.64903 03148 1385; 
= .08658 94417 76510 3 ; 

= 2.66308 44476 8609 
= 5.95483 78548 4858 
= .14134 47386 76446 
= 1.16336 25664 4511 
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APPENDIX II - COMPUTED FORMULAS FOR SERIES IN SECTION A 

£ 
n=l 

i 
n=l 

E 
n=l 

i 
n=l 

E 
n=l 

E 
n=l 

E 

E 
n=l 

E 
n=l 

E 
n=l 

E 

E 
n=l 

E 
n=l 

E 

(-1) n-1 

t-2n-l 

1 
-2n 

2n 

= .81594 79835 88122 ; 

.56617 76758 11385; 

4± = 4.79482 83758 3304 ; 
F2n 

-2n 

u2n-l 

4n-2 
F4n-2 

7_ 
L4n-2 

1 

.13513 57781 04988; 

1.07215 62188 8076; 

2.97741 89274 2429 

= .39840 78440 08491: 

- 1.20729 19969 8575 ; 
L2n 

(-1) n-1 

L-4n 
= .12429 07235 04095; 

—̂ - = .02087 07112 49618 ; 
I2 

L4n 

.11426 50668 55370; 
-4n-2 

1 
(2n - 1)L2n-i 

1.10858 16944 5815 ; 

-8n 

8n 

= .02173 95541 49399 ; 

-p- = .39769 58103 20044; 
F8n 

n=l f2«-l 
1.82451 51574 0692; 

(-11 £ ^ 
n-1 

= .23063 80122 05598; 
n=l 

n=l 

2n 

(-ir^n 
F2n 

2 ~r 
"•=* F2n 

Z-f-
n=l F2n-1 

1 

n=l 
(2n - 1)F4n_2 

1.16000 94790 1554; 

= 1.12939 07263 5581 ; 

- 1.29693 00248 1143; 

= 1.04573 08199 4974; 

E -1 
n=l 4n 

^ r2 
n=l rn 

n=l 
F4n-

n=l F4n 

r / £ 

1.81740 94484 0875; 

= .16776 98318 02894; 

= 2.42632 075116724; 

= .89086 70219 72118; 

= .11342 79589 57717, 

1.01596 27673 9809 ; 
n=l F< 4n-2 

in-1A 
£ (~ 1>

r '
 4n = 1.02201 78277 6866 ; 

n=l F*n 

£ -To TT? = -33567 81691 57557 ; 
nTi (2n ~ 1)F8n-4 

£ -r^— = .14603 02776 53494 ; 
n=l i8«~4 

y 8n-4 

n=l F8«~4 
1.41971 36380 8871. 


