FIBONACCI PRIMITIVE ROOTS AND THE PERIOD OF THE FIBONACCI NUMBERS MODULO P

M. J. DE LEON Florida Atlantic University, Boca Raton, Florida 33432

One says g is a Fibonacci primitive root modulo p, where p is a prime, iff g is a primitive root modulo p and $g^2 \equiv g \neq 1 \pmod{p}$. In [1], [2], and [3] some interesting properties of Fibonacci primitive roots were developed. In this paper, we shall show that a necessary and sufficient condition for a prime $p \neq 5$ to have a Fibonacci primitive root is $p \equiv 1$ or 9 (mod 10) and A(p) = p - 1, where A(p) is the period of the Fibonacci primitive root if it exists (Proposition 1). In the sequel, F_n will denote the n^{th} Fibonacci number and p will denote a prime greater than five.

The orem 1. There exists a Fibonacci primitive root modulo p iff $p \equiv 1$ or 9 (mod 10) and A(p) = p - 1.

Before proving six lemmas needed to prove Theorem 1, we shall remark (see [2] for a proof) that the congruence equation $x^2 \equiv x + 1 \pmod{p}$ has no solutions for $p \equiv 3$ or 7 (mod 10), one solution modulo 5, and two solutions modulo p for $p \equiv 1$ or 9 (mod 10).

Lemma 1. If $g^2 \equiv g \neq 1 \pmod{p}$ then $g^n \equiv F_n g \neq F_{n-1} \pmod{p}$.

The proof of Lemma 1 follows easily by induction.

Lemma 2. If $g^2 = g + 1 \pmod{p}$ and if g has order n then n = A(p) or $n = \frac{A(p)}{2}$. *Proof.* Since

$$g^{A(p)} \equiv F_{A(p)}g + F_{A(p)-1} \equiv 1 \pmod{p},$$

n | A(p). Thus $n \le A(p)$. If $F_n \equiv 0 \pmod{p}$, then

$$1 \equiv g^n \equiv F_n g + F_{n-1} \equiv F_{n-1} \pmod{p}$$
.

Thus $A(p) \le n$ and hence in this case n = A(p).

If $F_n \neq 0 \pmod{p}$ then

$$g \equiv \frac{1 - F_{n-1}}{F_n} \pmod{p}.$$

Thus

$$0 \equiv 0 \cdot F_n^2 \equiv (g^2 - g - 1)F_n^2$$

= $-(F_n^2 - F_n F_{n-1} - F_{n-1}^2) - (F_n + F_{n-1}) - F_{n-1} + 1$

$$= (-1)^n - L_n + 1 \pmod{p}$$

For *n* even, we have $L_n \equiv 2 \pmod{p}$ and this implies, since $L_n^2 - 5F_n^2 = 4(-1)^n$, that $F_n \equiv 0 \pmod{p}$. Thus we must have *n* odd and hence $L_n \equiv 0 \pmod{p}$. Since

$$\mathbf{0} \equiv L_n \equiv 3F_{n-1} + F_{n-2} \pmod{p}$$

we see that

$$1 = -(F_{n-1}^2 - F_{n-1}F_{n-2} - F_{n-2}^2) \equiv 5F_{n-1}^2 \pmod{p}.$$

Also we see that

$$-5 = L_n^2 - 5F_n^2 - 1 \equiv -5F_n^2 - 1 \equiv -5(F_n^2 + F_{n-1}^2) = -5F_{2n-1} \pmod{p}$$

FIBONACCI PRIMITIVE ROOTS AND THE PERIOD OF THE FIBONACCI NUMBERS MODULO P

Thus $F_{2n-1} \equiv 1 \pmod{p}$. Also $F_{2n} = F_n L_n \equiv 0 \pmod{p}$. Hence $A(p) \leq 2n$. Thus, since $n \mid A(p), A(p) = n$ or A(p) = 2n. In fact, since $F_n \neq 0 \pmod{p}$, A(p) = 2n.

Lemma 3. If $g^2 \equiv g + 1 \pmod{p}$, $g^n \equiv 1 \pmod{p}$, and n < A(p), then g is uniquely determined modulo p.

Proof. By Lemma 1,

$$1 \equiv g^n \equiv F_n g + F_{n-1} \pmod{p}.$$

Thus, if $F_n \equiv 0 \pmod{\rho}$ then $F_{n-1} \equiv 1 \pmod{\rho}$. Whence $A(\rho) \le n$. Thus $F_n \ne 0 \pmod{\rho}$. This implies that

$$g \equiv \frac{1 - F_{n-1}}{F_n} \pmod{p}$$

and therefore g is uniquely determined modulo p.

Lemma 4. Assume $p \equiv 1$ or 9 (mod 10) and assume g_1 and g_2 are two distinct solutions modulo p to the congruence equation $x^2 \equiv x + 1 \pmod{p}$. If $A(p) \equiv 2 \pmod{4}$ then one of g_1 , g_2 has order A(p) modulo p and the other has order A(p)/2 modulo p. If $A(p) \neq 2 \pmod{4}$ then g_1 and g_2 both have order A(p) modulo p.

Proof. By Lemmas 2 and 3, g_1 and g_2 both have order A(p), or one has order A(p) and the other has order A(p)/2. Thus, we may say that at least one of g_1 , g_2 has order A(p) and, without loss of generality, let us assume g_1 has order A(p).

If $A(p) \equiv 2 \pmod{4}$ then

$$-1 \equiv (-1)^{A(p)/2} \equiv (g_1g_2)^{A(p)/2} = g_1^{A(p)/2}g_2^{A(p)/2} \equiv -g_2^{A(p)/2} \pmod{p}.$$

Thus the order of g_2 is not A(p) so it must be A(p)/2.

If $A(p) \equiv 0 \pmod{4}$ then

$$1 \equiv (-1)^{A(p)/2} \equiv (g_1g_2)^{A(p)/2} = g_1^{A(p)/2}g_2^{A(p)/2} \equiv -g_2^{A(p)/2} \pmod{p}$$

Thus g_2 does not have order A(p)/2 so g_2 has order A(p).

If A(p) is odd then neither g_1 nor g_2 has order A(p)/2 so both g_1 and g_2 have order A(p).

Lemma 5. If there exists a Fibonacci primitive root modulo p then $p \equiv 1$ or 9 (mod 10) and A(p) = p - 1.

Proof. Assume g is a Fibonacci primitive root modulo p. By the remark after Theorem 1, $p \equiv 1$ or 9 (mod 10). Since g has order p - 1, by Lemma 4, p - 1 = A(p), or p - 1 = A(p)/2 and $A(p) \equiv 2 \pmod{4}$. This second possibility must be excluded since p - 1 is even.

Lemma 6. If
$$p \equiv 1$$
 or 9 (mod 10) and $A(p) = p - 1$, then there exists a Fibonacci primitive root modulo p.

Proof. Since $p \equiv 1$ or 9 (mod 10), there exists two solutions to $x^2 \equiv x + 1 \pmod{p}$. By Lemma 4, at least one of these two solutions has order A(p) = p - 1.

As a final result we prove

Proposition 1. If $p \equiv 11$ or 19 (mod 20) and if g is a Fibonacci primitive root modulo p then

$$q = - \frac{1 + F_{n-1}}{F_n} \pmod{p},$$

where n = (p - 1)/2.

Proof. Let g_2 be the solution other than g to $x^2 \equiv x + 1 \pmod{p}$ and let n = (p - 1)/2. By Lemma 5, $A(p) = p - 1 \equiv 2 \pmod{4}$. Thus, by Lemma 4, g_2 has order A(p)/2 = n. If $F_n \equiv 0 \pmod{p}$ then

$$-1 \equiv g^n \equiv F_n g + F_{n-1} \equiv F_{n-1} \equiv F_n g_2 + F_{n-1} \equiv g_2^n \equiv 1 \pmod{p}.$$

Hence $F_n \neq 0$ (mod p) and the result follows.

REFERENCES

- Brother Alfred Brousseau, "Table of Indices with a Fibonacci Relation," The Fibonacci Quarterly, Vol. 10, No. 2 (April 1972), pp. 182-184.
- 2. Daniel Shanks, "Fibonacci Primitive Roots," *The Fibonacci Quarterly*, Vol. 10, No. 2 (April 1972), pp. 163-168, 181.

DEC. 1977 FIBONACCI PRIMITIVE ROOTS AND THE PERIOD OF THE FIBONACCI NUMBERS MODULO P

3. Daniel Shanks and Larry Taylor, "An Observation on Fibonacci Primitive Roots," *The Fibonacci Quarterly*, Vol. 11, No. 2 (April 1973), pp. 159–160.
