FIBONACCI PRIMITIVE ROOTS AND THE PERIOD OF THE FIBONACCI NUMBERS MODULO P

M. J. DE LEON
Florida Atlantic University, Boca Raton, Florida 33432

One says g is a Fibonacci primitive root modulo p, where p is a prime, iff g is a primitive root modulo p and $g^{2} \equiv g+1(\bmod p)$. In [1], [2], and [3] some interesting properties of Fibonacci primitive roots were developed. In this paper, we shall show that a necessary and sufficient condition for a prime $p \neq 5$ to have a Fibonacci primitive root is $p \equiv 1$ or $9(\bmod 10)$ and $A(p)=p-1$, where $A(p)$ is the period of the Fibonacci numbers modulo p (Theorem 1); for $p \equiv 11$ or $19(\bmod 20)$, we shall explicitly determine the Fibonacci primitive root if it exists (Proposition 1). In the sequel, F_{n} will denote the $n^{\text {th }}$ Fibonacci number and p will denote a prime greater than five.
The orem 1. There exists a Fibonacci primitive root modulo p iff $p \equiv 1$ or $9(\bmod 10)$ and $A(p)=p-1$.
Before proving six lemmas needed to prove Theorem 1, we shall remark (see [2] for a proof) that the congruence equation $x^{2} \equiv x+1(\bmod p)$ has no solutions for $p \equiv 3$ or $7(\bmod 10)$, one solution modulo 5 , and two solutions modulo p for $p \equiv 1 \operatorname{or} 9(\bmod 10)$.
Lemma 1. If $g^{2} \equiv g+1(\bmod p)$ then $g^{n} \equiv F_{n} g+F_{n-1}(\bmod p)$.
The proof of Lemma 1 follows easily by induction.
Lemma 2. If $g^{2} \equiv g+1(\bmod p)$ and if g has order n then $n=A(p)$ or $n=\frac{A(p)}{2}$.
Proof. Since

$$
g^{A(p)} \equiv F_{A(p) g}+F_{A(p)-1} \equiv 1(\bmod p)
$$

$n \mid A(p)$. Thus $n \leqslant A(p)$.
If $F_{n} \equiv 0(\bmod p)$, then

$$
1 \equiv g^{n} \equiv F_{n} g+F_{n-1} \equiv F_{n-1}(\bmod p)
$$

Thus $A(p) \leqslant n$ and hence in this case $n=A(p)$.
If $F_{n} \not \equiv=0(\bmod p)$ then

$$
g \equiv \frac{1-F_{n-1}}{F_{n}}(\bmod p) .
$$

Thus

$$
\begin{aligned}
0 & \equiv 0 \cdot F_{n}^{2} \equiv\left(g^{2}-g-1\right) F_{n}^{2} \\
& \equiv-\left(F_{n}^{2}-F_{n} F_{n-1}-F_{n-1}^{2}\right)-\left(F_{n}+F_{n-1}\right)-F_{n-1}+1 \\
& \equiv(-1)^{n}-L_{n}+1(\bmod p) .
\end{aligned}
$$

For n even, we have $L_{n} \equiv 2(\bmod p)$ and this implies, since $L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}$, that $F_{n} \equiv 0(\bmod p)$. Thus we must have n odd and hence $L_{n} \equiv 0(\bmod p)$. Since

$$
0 \equiv L_{n} \equiv 3 F_{n-1}+F_{n-2}(\bmod p)
$$

we see that

$$
1=-\left(F_{n-1}^{2}-F_{n-1} F_{n-2}-F_{n-2}^{2}\right) \equiv 5 F_{n-1}^{2}(\bmod p)
$$

Also we see that

$$
-5=L_{n}^{2}-5 F_{n}^{2}-1 \equiv-5 F_{n}^{2}-1 \equiv-5\left(F_{n}^{2}+F_{n-1}^{2}\right)=-5 F_{2 n-1}(\bmod p) .
$$

Thus $F_{2 n-1} \equiv 1(\bmod p)$. Also $F_{2 n}=F_{n} L_{n} \equiv 0(\bmod p)$. Hence $A(p) \leqslant 2 n$. Thus, since $n \mid A(p), A(p)=n$ or $A(p)=2 n$. In fact, since $F_{n} \neq 0(\bmod p), A(p)=2 n$.
Lemma 3. If $g^{2} \equiv g+1(\bmod p), g^{n} \equiv 1(\bmod p)$, and $n<A(p)$, then g is uniquely determined modulo p.

Proof. By Lemma 1,

$$
1 \equiv g^{n} \equiv F_{n} g+F_{n-1}(\bmod p)
$$

Thus, if $F_{n} \equiv 0(\bmod p)$ then $F_{n-1} \equiv 1(\bmod p)$. Whence $A(p) \leqslant n$. Thus $F_{n} \equiv 0(\bmod p)$. This implies that

$$
g \equiv \frac{1-F_{n-1}}{F_{n}}(\bmod p)
$$

and therefore g is uniquely determined modulo p.
Lemma 4. Assume $p \equiv 1 \operatorname{or} 9(\bmod 10)$ and assume g_{1} and g_{2} are two distinct solutions modulo p to the congruence equation $x^{2} \equiv x+1(\bmod p)$. If $A(p) \equiv 2(\bmod 4)$ then one of g_{1}, g_{2} has order $A(p)$ modulo p and the other has order $A(p) / 2$ modulo p. If $A(p) \equiv 2(\bmod 4)$ then g_{1} and g_{2} both have order $A(p)$ modulo p.
Proof. By Lemmas 2 and $3, g_{1}$ and g_{2} both have order $A(p)$, or one has order $A(p)$ and the other has order $A(p) / 2$. Thus, we may say that at least one of g_{1}, g_{2} has order $A(p)$ and, without loss of generality, let us assume g_{1} has order $A(p)$.
If $A(p) \equiv 2(\bmod 4)$ then

$$
-1 \equiv(-1)^{A(p) / 2} \equiv\left(g_{1} g_{2}\right)^{A(p) / 2}=g_{1}^{A(p) / 2} g_{2}^{A(p) / 2} \equiv-g_{2}^{A(p) / 2}(\bmod p)
$$

Thus the order of g_{2} is not $A(p)$ so it must be $A(p) / 2$.
If $A(p) \equiv 0(\bmod 4)$ then

$$
1 \equiv(-1)^{A(p) / 2} \equiv\left(g_{1} g_{2}\right)^{A(p) / 2}=g_{1}^{A(p) / 2} g_{2}^{A(p) / 2} \equiv-g_{2}^{A(p) / 2}(\bmod p)
$$

Thus g_{2} does not have order $A(p) / 2$ so g_{2} has order $A(p)$.
If $A(p)$ is odd then neither g_{1} nor g_{2} has order $A(p) / 2$ so both g_{1} and g_{2} have order $A(p)$.
Lemma 5. If there exists a Fibonacci primitive root modulo p then $p \equiv 1 \operatorname{or} 9(\bmod 10)$ and $A(p)=p-1$.
Proof. Assume g is a Fibonacci primitive root modulo p. By the remark after Theorem $1, p \equiv 1$ or 9 $(\bmod 10)$. Since g has order $p-1$, by Lemma $4, p-1=A(p)$, or $p-1=A(p) / 2$ and $A(p) \equiv 2(\bmod 4)$. This second possibility must be excluded since $p-1$ is even.

Lemma 6. If $p \equiv 1 \operatorname{or} 9(\bmod 10)$ and $A(p)=p-1$, then there exists a Fibonacci primitive root modulo p.
Proof. Since $p \equiv 1 \operatorname{or} 9(\bmod 10)$, there exists two solutions to $x^{2} \equiv x+1(\bmod p)$. By Lemma 4 , at least one of these two solutions has order $A(p)=p-1$.
As a final result we prove
Proposition 1. If $p \equiv 11$ or $19(\bmod 20)$ and if g is a Fibonacci primitive root modulo p then
where $n=(p-1) / 2$.

$$
g \equiv-\frac{1+F_{n-1}}{F_{n}}(\bmod p)
$$

Proof. Let g_{2} be the solution other than g to $x^{2} \equiv x+1(\bmod p)$ and let $n=(p-1) / 2$. By Lemma 5, $A(p)=p-1 \equiv 2(\bmod 4)$. Thus, by Lemma $4, g_{2}$ has order $A(p) / 2=n$. If $F_{n} \equiv 0(\bmod p)$ then

$$
-1 \equiv g^{n} \equiv F_{n} g+F_{n-1} \equiv F_{n-1} \equiv F_{n} g_{2}+F_{n-1} \equiv g_{2}^{n} \operatorname{m} 1(\bmod p) .
$$

Hence $F_{n} \not \equiv 0(\bmod p)$ and the result follows.

REFERENCES

1. Brother Alfred Brousseau, "Table of Indices with a Fibonacci Relation," The Fibonacci Quarterly, Vol. 10, No. 2 (April 1972), pp. 182-184.
2. Daniel Shanks, "Fibonacci Primitive Roots," The Fibonacci Quarterly, Vol. 10, No. 2 (April 1972), pp. 163-168, 181.
3. Daniel Shanks and Larry Taylor, "An Observation on Fibonacci Primitive Roots," The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), pp. 159-160.
