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Letting/ be an integer, consider sequences of the form
(1) Prv1 = jPu+Puq,

where Py = 0. Without loss of generality take A, = 1. As an example think of 0, 1, 3, 10, 33, 109, ---. We can
define the Lucas complement of (1) to be

(2) P;::Pn+1+Pn—1 .
The solution of these via the characteristic equation for the roots of [1] is well known. Let the roots of
(3) (G —jg—1 =0

be a,b. The theory of equations tells us that ab = —1 and that (a + b) = j. This gives (a — b) = 2a — j. Using the
initial conditions it can easily be shown following the method of Vorob'ev [1] that

(4) Py = (a" = b")/la—b) and Pr=(a"+b").
A few manipulations suffice to show that

(5) Pj,Zn = Pj,nPan

and using (ab)" = (—1)" we can prove

(6) Pion-1 = Pj,n_jP]?fn —cos (mn).

Although well known for the Fibonacci and Lucas sequences when / = 1, their validity when j # 1 has not
been appreciated. Similarly we can derive

) Pian+1 = Pjon+1P3, — 1.

Good [2] has derived the harmonic sum

> (1/Fy) = 3—Fp_(/Fp ,

m=0

where b = 2™ and B = 2" have the virtue of conciseness. A double generalization follows introducing j as
above and & a natural number arbitrary multiplier.

Theorem.

n
(8) Z (7/Pj,kb) = Cj,k‘Pj,kaI/Pj,kB for n> 1.
m=0

Proof Let/' have any value, then as the basis for induction the proposition is certainly true forn = 1
since that merely defines the parameter C; .. Now assume that it is true for some B = 2" and add the next
term (7/P]-]k23,‘ to each side. Hence the added term will equal the new minus the old right-hand side.

1/Pj k2B = (P kB-1/PjkB) — (PjL2B-1/Pj k2B)-
Cross-multiplying we have
PitB = Pj2kBPjkB-1— Pj 2kB-1Pj kB
which is easy to prove using a Binet type of formula (4) as only the cross-product terms are non-zero. But it
356



DEC. 1977 OGN SUMS OF FIBONACCI-TYPE RECIPROCALS 357

would be more aesthetically appealing to keep the proof in the realm of integers. This is easily done by sub-
stitution of first (5) and then (6) into the above equation. This completes the inductive transition.
Recall that C; , is found from (8) when n = 1. The numerators of £; , are thus

(9) PyokCik = (1+P1 +P; 5 1),

Successive application of (1) shows that

(10) (P} = 0.1, G7+ 1) (7 + 2, (7 + 3%+ 1), (° + 47 + 37), .
And using the definition (2) for the Lucas complement one finds

(11) (Pre) = 25,67+ 2) (7 +3j), (77 + 4 +2), (7 + 57 +5j), .

And using (9) the numerators of C; 1, are

(12) {PiokCik) =44 +2), (277 +4), (7 +j7 + 3% + 3+ 2), (j° + 6% + 107 +4),

(15 +7j0 +j° + 157 + 57 + 102 + 5 + 2, .
Table of C; 1, Values

{written in the form with denominator P; 2 as in Eq. (8))

ko1 2 3 4 5 6

1 31 6/3 10/8 21/21 46/55 108/144
2 42 1212 44/70 204/408 1068/2378

3 5/3 22/33  146/360 1309/3927 13364/42837

4 6/4 38/72  382/1292  579B/23188  99574/416020

5 7/5 54/135 843/3640 19629/98145 513402/2646275

J 2/f Vi
There are some simplifications. When & = 0 (mod 4) then using (5) gives C; . = P; -1 /Pj 1y, where h = %
and for k=4, 8, - C; 1 = (1/j), (1/j = 1/P; 4), . When k =2 (mod 4) then using (7) one finds

Cik = Plrn-1/Pfen
where h = /2 and for k = 2, 6, C; . = 2/, (1/j - 7/P]f3), . A short table of C; ¢ values is given and the in-
terested reader can extend it with some patience.

Returning to the point of this paper, if we sum both sides of (8) over all odd k then the left-hand side is in-
tuitively obviously a sum over all the natural numbers. The right-hand side of {8} is merely a sum over all odd
k and so the sum of the reciprocals of numbers satisfying (1} (which | call coprime sequences) has been re-
duced to half the number of terms. The special case of Fibanacci numbers, j = 1, was derived by the authorin
October 1975 and is [3]. Gould [4, Eq. 2] expresses the rearrangement array as a sum and goes on to gener-
alize it into partition arrays, his equation (9). So from (8) | write

(13) 2 (1P) = 3 (Cip.— 1/) for k odd
n=1 k=1
(14) = 3 [P+ 1Py 1+ (a— b)a™* — 1)]
k=1
k odd

as but two of several expressions that can be derived using Binet's expressions (4), wherea + 5 =/ and ab =~ 1.
All of the equations in the author's earlier paper [3] are valid here by merely replacing \/gby the more gen-
eral (a — b) and [ do not see any point in taking up space to repeat them. | refer to sequences satisfying (1) as
coprime sequences because they fulfill a generalizaticn of a theorem in Vorob'ev [1] showing that only in this
case are adjacent terms always coprime. The author used the generalization of this theorem in an eartier work

(5]
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