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In a previous article [2 ] , we conjectured that the idea of a quaternion with quaternion components could 
be extended to include higher order quaternions. The purpose of this article is to investigate this concept and 
to obtain further generalizations of the results in [2 ] . 

PROPERTIES 

Firstly, to be able to denote higher order quaternions, we need to introduce an operator notation. Thus for 
X a positive integer we define the quaternions of order \ , after X operations, as: 

(1) 0XWn = 0.(0(0-(OWn)-)) = Ok~1Wn + iSl^Wn+t + jOX'1Wn+2 + m X " % n + 3 

(2) AXWn = A(A(A-(AWn)-)) = A X ~ % n + iq A X - % ^ + jq2 A X ~% n _ 2 + kq3 AX~%n,3 

where we also define 

(3) O0Wn = Wn, A°Wn = Wn, OlWn = OWn, AlWn = Awn 

and the quaternion vectorsi,j,k have the following properties 

(4) i2 - f = k2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = / 

and where from Horadam [1] we have that for integers a,bfp,q, 

(5a) Wn EE Wn(a,b;p,q) 

Wn = p\Nn-i ~ qWn-2 for n > 2 

W0 = a, Vilt = b 

(5b) Un EE Wn(1,p;P,q) 

(5c) Vn EE Wn(2,p;p,q) 

(5d) e - pab-qa2 - b2 . 

Thus we see from (1), (3), (5b) and (5c) that for X = 1 we obtain the special cases 1(a), Kb) and 1(c) of [2 ] , 
while X = 2 gives us 7(a) and 7(b) of [2 ] . Equation (11) of [2] is obtained from (2) and (3) forX= 1. 

We can now combine the operators O and A to define quaternions of the type O AWn and AOWn, i.e., 

(6) OAIA/n = 0(AWn) = AWn +iAWn+1 + j AWn+2 + kAWn+3 

(7) AOWn = A(OWn) = OWn+iqOWn_1+jq2OWn_2+kq3OWn_3, 

If we expand (6) and (7) we see that 
^A^n f Anwn . 

Since quaternion vector multiplication is non-commutative we also know that 

i-OWmOWn ? OWm-i-OWn ? OWmOWn-i . 

To overcome some of the problems associated with calculations involving higher orderquaternions, resulting 
from the failure of the commutative law for quaternion multiplication, we introduce two new operators, name-
ly O * and A * . We thus define 

(8) 0*OWn = 0*(Q,Wn) = OWn + OWn+1.i + OWn+2-j + OWn+3'k 
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(9) A*AWn = A*(AWn) = AWn+qAWn„vi + qAAWn_2-j + q3AWn„3*k 

Hence we see that the operators £2* and A * are the same as the operators £2 and A except that they create 
quaternions by post-multiplication of the quaternion vectors. Obviously 

Q.*Wn = SlWn 
and since, say 

A f i X = A(Q*Wn) = AQ,Wn 

it follows that the star operators are only meaningful when applied to the L.H.S. of quaternions of order > 1 . 
If we now expand the R.H.S. of Eq. (8) we see that we have result 8(a) of [2 ] , i.e., 

(10) Sl*SlWn = £l2Wn. 

Similarly from (9) it follows that 
(11) A X - A2Wn . 

We leave it to the reader to show, by expanding, that 

(12) £lAWn = A*£lWn 

(13) A£lWn = Q,*AWn 

and to prove the associative laws for the operators, e.g., 

(14) (SlA)£lWn = £l(AQ)Wn, (A£l)AWn = A(£lA)Wn . 

Nowforjua positive integer we know 

£2*£2%n = Ql*(nQt
ll'1)Wn (by (1)) 

= ^ * n ; « M " % „ (Associative laws) 

= n^^^Wn (by (10)) 

(15) ft*S2%w = ^+1Wn ( by (D) . 

If we replace 12 by A in the above proof we obtain the result 

(16) A * A % „ = A^+1Wn . 

Next, induction on JJL produces the results 

(17) 1 2 A % n - (AV^nWn 

(18) A^Wn =. (Q,*)^AWn . 

Using the above results and induction on Awe can prove the following 

(19) AX£lWn = tt*AXWn 

(20) SlXAWn = A*SlXWn 

(21) (Sl*)X^Wn = 1 2 X + % n 

(22) (A*)kAllWn = AX+llWn 

(23) 12XA%M = (A*)^XWn 

(24) AX^Wn = (a *)iXAXWn 

EXTENDED GENERALIZED RESULTS 
In this section we extend some of the identities given in lakin [2 ] . We commence by proving the generaliza-

tion of Eq. (10) of [2 ] . 

(25) nXU_n = -q'n+1AXUn_2 . 

Proof. We prove this result using induction on A. For A = 1 we have Eq. (10) of [2 ] . Assume the result is 
true for A = /7, i.e., 
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ftVw - -q-n+1AhUn-2 . 
Now for X= /7 + 1 we have from (1) 

£lh+1U_n = nhU„n + inhU„n+1+j£lhU„n+2 + k£lhU„n+3 

which becomes on using the assumption 

nh+1U.„ = -q-n+1AhU„_2 -iq-n+2AhUn„3-jQ-"+3AhUn„4 - kq-"+4AhUn„5 

= -q'n+1(AhU„.2f/qAhUn^ +:iq2AhUn^+kq2AhUn^) = -q'n+1A***Un_2 (by (2)) 
Since the result holds for X= 1 and is true for \= h + 1 providing it is true for \ = h, then by the principle of 

induction the result holds for all positive integer values of X. 
Similarly we can show by induction on X that 

(26) ftV-M = q~nAXVn 

(27) ttXW„n = q-n(aAXUn - bAXUn^) 
(28) Q^Wn+r+qr&XWn„r = VrttXWn . 

After a lengthy proof using induction on X + ju we have 

(29) nX+^Wm+n = n^Wm^Un-q^W^i^Un^ 

for which we obtain the special cases 

(30) 2ttX+VUm+n„1 = ^Um^^Vn+n^Vm^Un^ 

(31) 2£lX+llVm+n = QJ
XVmVLlxVn + cl2QXUm,1^llUn.1 

where d2 = p2 - 4q. 
If we again use induction on X + / i we can arrive at 

(32) ^ X M / m a % n - ^ X M / m _ i n % n _ i = aQ?<+^Wm^ + <b-pa)Q^+^Wm^_1 

(33) nXWm+1^Wn+1-q2nXWm,i^ 

Now letting m = n and X = jU in both (32) and (33) gives us 

(34) (^W^-q^Wn^)2 = aa2XW2n + (h-pa)tt2XW2n~i 
(35) Y a X f 4 / ^ 

Note that Eqs, (28), (29), (30), (31), (32), (33), (34) and (35) give, as special cases, Eqs. 24(a) and (b), 22(a) 
and (b), 21(a) and (b), (23), (16) and (17),"(20), (18) and (19), respectively. 

We now list a set of identities whose proofs we omit due to their length and repetitiveness. We leave it to 
the reader to prove by induction the following results: 

wn_rnx+^wn+r+t 

(36) - nXWnQVwn+t + eqn~rttXUr_1ttlIUiH-t„1 

(37) . = Q^Wn+t&wn + eqn-TS^Ur+t-1Q.Vur-1 

QXWn„rtt^Wn+r+t 

(38) - - i r l U A % H + f + e / H ' A V ^ ^ r + f - l 
(39) ;= ^XWnQl^Wn+t+eqn~rU^1AknlxUr+t-.i 
(40) '/'^ = ^Wn+t^Wn + eqn'rUri.t.1I^^U^i 
(41) . = Wn+tnX+^WH + €qn'rAXUr+t.1nldU^1 
and finally fiAM/m_r+^%n 
(42) = Wll.T+tnX+tlWrii+r+s-+eqn-rAXUn-m,1Sltlu2^Hs_1 

(43) = nXWn,r+t^Wm+r+s + eqn"'Un,m^AX^U2r^+s-i 
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(44) = ^XWm+rhs^Wn^t+eqn'TU2^^l^llUn.r^i 
(45) = Wm+r+snX+^Wn.r+t + eqn-r^U2r^+s-l^llUn^m^ . 

Putting X= 1 and/z= 1 in (36), (39) and (40) gives us, respectively, (13), (26) and (27) of [2 ] , while letting 
X - 1, ix = 2 in (39) and (40) gives, respectively, 28(a) and (b). If, however, we let t = 0,s = 0, X = 1 and jx= 1 
in (43) we have as a special case result (29) of [2 ] . 
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LETTER TO THE EDITOR 

16 September 1977 

Dear Professor Hoggatt: 

In a recent article with Claudia Smith (The Fibonacci Quarterly, Vol. 14, No. 4, p. 343), you referred to the 
question whether a prime p and its square p2 can have the same rank of apparition in the Fibonacci sequence, 
and mentioned that Wall (1960) had tested primes up to 10,000 and not found any with this property. 

\ have recently extended this search and found that no prime up to 1,000,000 (one million) has this property. 
My computations in fact test the Lucas sequence for the property 

(1) Lp = 1 (modp2) p = prime. 

For p > 5 this is easily shown to be a necessary and sufficient condition for/7 and/72 to have the same rank of 
apparition in the Fibonacci sequence, because of the identity 

(2) (Lp- V(Lp+V = 5Fp^Fp+1. 
So far I have shown that the congruence (1) does not hold for any prime less than one million; I hope to extend 
the search further at a later date. 

You may wish to publish these results in The Fibonacci Quarterly. 

Yours sincerely, 

s/ Dr. L.A. G. Dresel 
The University of Reading, 

Berks, UK 


