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FINITE DIFFERENCE CONCEPT 

Given a function f(n) the first difference of the function is defined 

Af(n) = f(n + 1)-f(n). 

(NOTE: There is a more generalized finite difference involving a step of size h but this can be reduced to the above 
by a linear transformation.) 

EXAMPLES 

f(n) = 5n+3, Af(n) = 5(n + V +3 - (5n +3) = 5 

f(n) = 3n2 + 7n +2 \Af(n) = 3(n + V2 + 7(n + 1)+2- (3n2 +7n+2) = 6n + 10. 

Finding the first difference of a polynomial function of higher degree involves a considerable amount of arithmetic. 
This can be reduced by introducing a special type of function known as a generalized factorial. 

GENERALIZED FACTORIAL 

A generalized factorial 
W W = x(x - 1)(x - 2) - (x-n + 1), 

where there are n factors each one less than the preceding. To tie this in with the ordinary factorial note that 
/?W = n! 

EXAMPLE 

x<4> = x(x-1)(x-2)(x-3). 
The first difference of x'n' is found as follows: 

Ax(n) = (x + 1)x(x - V - (x-n+3)(x-n+2J- x(x - 1)(x - 2) - (x-n+2)(x-n + 1) 
= x(x - 1)(x - 2) - ( x - n +3)(x - n+2)[x+1 - (x - n + 1)] = nx(n-1}. 

Note the nice parallel with taking the derivative of xn in calculus. 
To use the factorial effectively, in working with polynomials we introduce Stirling numbers of the first and second 

kind,. Stirling numbers of the first kind are the coefficients when we express factorials in terms of powers of x. Thus 

x(1) = x, x(2) = x(x~ 1) = x2 -xt x(3) = x(x- 1)(x-2)(x-3) = x3 -3x2+2x 

x(4) = x(x - 1)(x - 2)(x - 3) = x4 - 6x3 + llx6 - 6x. 
Stirling numbers of the first kind merely record these coefficients in a table. 

Stirling numbers of the second kind are coefficients when we express the powers of x in terms of factorials. 
x = J1* 

x2 = x2 -x+x = x^2) +x^ 

x3 = x3 - 3x2 +2x + (3x2 - 3x) +x = x(3)+3x(2) +x(1) 

As one example of the use of these numbers let us find the difference of the polynomial function 

4x5 - 7x4 + 9x3 - 5x2 +3x-1. 

Using the Stirling numbers of the second kind we first translate into factorials, 
53 
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TABLE OF STIRLING NUMBERS OF THE FIRST KIND 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

power of * 

1 2 
1 

-1 1 
2 -3 

-6 11 
24 -50 

-120 274 
720 -1764 

-5040 13068 
40320 -109584 

-362880 1026576 

3 

1 
-6 
35 

-225 
1624 

-13132 
118124 

-1172700 

4 

1 
-10 
85 

-735 
6769 

-67284 
723680 

5 

1 
-15 
175 

-1960 
22449 

-269325 

6 

1 
-21 
322 

-4536 
63273 

7 

1 
-28 
546 

-9450 

Giving 

TABLE OF STIRLING NUMBERS OF THE SECOND KIND 
Coefficients otx(k) 

n 
1 
2 
3 
4 
5 
6 
7 
8 1 
9 
10 

2 

1 
3 
7 
15 

1 31 
63 
127 
255 

1 511 

3 

1 
6 
25 
90 
301 
966 
3025 
9330 

4 

1 
10 
65 
350 
1701 
7770 
34105 

5 

1 
15 
140 
1050 
6951 
42525 

6 

1 
21 
266 
2646 
22827 

7 8 

1 
28 1 
462 36 
5880 750 

9 

1 
45 

10 

TABLE OF FACTORIALS 
,(5) yW y(V y(2) M) 

4x> 

-7x4 

9x3 

-5x2 

3x- 1 

4 40 

-7 

100 

-42 

9 

60 

-49 

27 

-5 

4 

-7 

9 

-5 

3 -1 

4x(5) + 33x(4) + 67x(3) + 33x(2) +4x(l)-1. 

Using the formula for finding the difference of a factorial the first difference is given by 
20xW + 132x(3) +201x(2)+66x(l)+4. 

Now we translate back to a polynomial function by using Stirling numbers of the first kind. 

x x x x 
20x(4) 20 -120 220 -120 
132x(3) 132 -396 264 
201x^ 201 -201 
66x(1) + 4 66 

The resulting polynomial function is 
20x4 + 12x3 +25x2 +9x + 4 
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A POLYNOMIAL FUNCTION FROM TABULAR VALUES 
From the above it is evident that the first difference of a polynomial of degreen is a polynomial of degree/? - 1; 

the second difference is a polynomial of degree n - 2; etc., so that the nth difference is a constant. The (n + 1)st dif-
ference is zero. As a matter of fact since at each step we multiply the coefficient of the first term by the power of x, 
the/7 difference of 

a0xn + a1xn~1 + a2xn~3 + - + an_1x + an 
\saon! 

Conversely if we have a table of values and find that the rth difference is a constant we may conclude that these 
values fit a polynomial function of degree r. For example for 

fix) = 5x3-7x2+ 3x-8 
we have a.table of values and finite differences as follows. 

X 

0 

1 

2 

3 

4 

5 

6 

f(x) 

-8 

-7 

10 

73 

212 

457 

838 

Af(x) A*f(x) A*f(x) 

1 
i 

17 

63 

139 

245 

381 

547 

16 

46 

76 

106 

136 

166 

30 

30 

30 

30 

30 

7 1385 

The problem is how to arrive at the original formula from this table. 
Suppose that the polynomial is expressed in terms of factorials with undetermined coefficients bg, bi, b2, — • The 

problem will be solved if we find these coefficients. 

fix) = b0+b1x(1)+b2x(2) + b3x(3) + b4x(4) + b5x(5) + -
Af(x) = bt +2b2x(1)" +3b3xm +4b4x(3)+5b5x(4) + -
A2f(x) = 2!b2+3*2b3x(1)+4*3b4x(2) + 5*4h5x(3) + -

A3f(x) = 3!b3+4*3*2h4x(1) +5*4*3b5x(2) + -
A4f(x) = 4!b4 + 5*4*3*2b5x(1) + - . 

Set* = O. Since any factorial is zero forx = O we have from the above: 

f(0) = b0 or b0 = f(0) 

Af(0)=bi 
A2H0) = 2!b2 

A3f(0)= 3!b3 

A4f(0)= 4!b4 
Hence 

fM = no) + LHO)xW + L
2 f^-x^ + L

3 f-§ x^ + A4 f§xW + 

or 
or 
or 
or 

bi ' 
bi-
bs -
b4-

= Af(O) 
-- A2f(0)/2! 
- A3f(0)/3! 
' A4f(0)/4!. 
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This is known as Newton's forward difference formula. We can find the quantities f(O), Af(O), A 2f(0), A3f(0), 
A 4f(0), - from the top edge of our numerical table of values provided the first value in our table is 0. 

f(x) = -8+x + 16x^/21 + 30x(3)/3! = -8 + x + 8x2 - 8x + 5x3- 15x2 + lOx = 5x3 -7x2 +3x- 8. 

Stirling numbers of the first kind can be used in this evaluation. 

SUMMATIONS INVOLVING POLYNOMIAL FUNCTIONS 

Since a polynomial function can be expressed in terms of factorials it is sufficient to find a formula for summing 
any factorial. More simply by dividing the kth factorial by k! we have a binomial coefficient and the summation of 
these coefficients leads to a beautifully simple sequence of relations. 

To evaluate 
n n 

2 k> ,et E k = *(n) 

meaning that the value is a function of n. Then 
n+l n 

A<p(n) = Yl k~ 1L k = n + 1 -

Now A/? = 7 and An(2>/2 = n. Hence 
n 

<p(n) = £ k = n(2)/2+n+C = n(n + l)/2 + C, 

where the C is necessary in taking the anti-difference jsince the difference of a constant is zero. This corresponds to 
the constant of integration in the indefinite integral. To find the value of C let/7 = /. Then 

/ = U2/2 + C so that C = 0. 
Hence 

£) k = n(n + 1)/2= (« / ' ) 

a well-known formula. Next, let 

2 p r ) - - ^ , A*M~z {>+>)-<£ ( f er)-(«r) 
The difference 

Hence 

k = l 

n = 7 shows that C = 0. The sequence of formulas can be continued: 

k=l 
and in general 

£ lk+32) = ln43) 
1 = 1 

E (*;;) = (\+;r) 
One could derive the formula for the summation of a factorial from the above but proceeding directly: 
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u k=1 

Hence, 

n 
£ kW = y(n), Aip(n) = (n + 1)(r). 

1 

yM= y kM = <n + D(r+1)
 +C. 

LJ r+1 
k=l 

Taking n = r, 
rl = (r+V(r+l)/(r+1) + C 

so that C = 0. 

h r+1 
Again there is a noteworthy parallel with the integral calculus in this formula. 

For examples we take some formulas from L. B. W. Jolley Summation of Series, 
n 

EXAMPLE 1.(45) p. 8, ] £ (3k - 1)(3k+2) = 2*5+ 5*8 + 8*11 +-
k=l 

This equals 

f; m2+3k-2)= £ ; m<2) + m<i)-2) = 9 (^i^'*12 (JL±M^-.2(n + i)+c. 
k=l k=l 

Taking n = 1, 2*5 = 6*2 - 2*2 + c so that £ = 2 
n 

J2 (3k- 1)(3k+2) = 3n3 -3n+6n2 + 6n-2n-2+2 = n(3n2 + 6n + 1). 
k=l 

EXAMPLE 2. (50) p. 10 
n n n 

]T k(k + 3)(k + 6) = 1*4*7 + 42*5*k + 3*6*9 + -= ]T (k3 + 9k2 + 18k) = J^ (k(3) + m W + 28k(1)> 
k=i k=l k=l 

= (n+ 1)(4> + u (n + 1)<3) +28(]l+j£l + c = (jU-^[(n-1)(n-2)+16(n-1)+56]+C 

= n(n+1)(n + 6)(n + 7)/4 + C. 

Setting/? = 1,1*4*7 = 1*2*7*8/4 + c so that C = 0 
n 

] P k(k + 3)(k + 6) = n(n+1)(n+6)(n + 7)/4. 
k=l 

EXAMPLE 3. (49) p. 10 
n 

] T (3k-2)(3k + 1)(3k + 4) = 1*4*7 + 4*7*10*13 + - . 
k=i 

This can be changed directly into a factorial: 
n n 

27 £ (k-2/3)(k+1/3)(k + 4/3) = 27 £ (k+4/3p> 
k=l k=l 

giving 
27(n + 7/3)^/4 + C = (3n + 7)(3n + 4)(3n + 1)(3n -2)/12 + C. 

Settingn=1, 28 = {10*7*4*1)112 * £ so that C = 56/12 
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(3k - 2)(3k + 1)(3k + 4) = (3n + 7)(3n + 4)(3n + 1)(3n - 2)/12 + 56/12 . 

SUMMATIONS THROUGH NEGATIVE FACTORIALS 
Starting with the relation 

x(
mh(x-m)W = x(™+") 

set m = -n. 
x(~n>*(x+n)(n) = x(°> = 1. 

T\\extfoxex(-n)=1/(x+n)(n). 
Possibly this bit of mathematical formalism seems unconvincing. Suppose then we define the negative factorial in 

this fashion. 
Ax^ = 1/[(x+n + 1)(x+n)(x+n- 1) ~.(x + 2)1 - 1/[(x +n)(x + n - 1)(x + n -2) -(x + 2)(x + 1)] 

= 1/Ux + nHx + n - 1) -. fx +2)][1/(x+n + 1) - 1/(x + 1)] 

= -n/[(x + n + 1)(x + n)(x + n-1)-(x + 1)1 = -nx^n~^ 

showing that the difference relation that applies to positive factorials holds as well for negative factorials defined in 
this fashion. Consequently the anti-difference which is used in finding the value of summations can be employed 
with negative factorials apart from the case of - 1 . 
EXAMPLE 1. 

£ 1/[k(k + 1)(k+2)] = J2 <k-1)(~3) = n(-2)/(-2) + C = -1/[2(n + 2)(n + 1)] + C. 
k=l k=i 

Setting n = 1, 1/6 = -1/(2*3*2) + C, so that C = 1/4 
n 

J2 f/fkfk + 1)(k + 2)] = 1/4 - 1/[2(n + 2)(n + 1)J . 
k=l 

EXAMPLE 2. Jollev, No. 210, p. 40 
n n n 

£ 1/[(3k - 2)(3k + 1)(3k + 4)] = (1/27) £ 1/fk - 2/3)(k + 1/3)(k + 4/3)1 = (1/27) £ fk - 5/3) (~3> 
k=l ~ k=l k=l 

= (1/27)(n - 2/3) ('2)/(-2) + C = - 1/[6(3n + 4)(3n + 1)1 + C. 

Setting n = 1, 1/(1*4*7) = -1/(6*7*4) + C; C= 1/24 
n 

£ 1/[(3k - 2)(3k + 1)(3k + 4)1 = 1/24 - 1/[6(3n + 4)(3n + 1)1 
k=i 

EXAMPLE 3. Jolley, No.213, p. 40 
n n n * 

£ (2k - 1)/[k(k + 1)(k +2)1 = 2 £ 1/[(k + 1)(k +2)1 - £ f/fkfk + 1)(k + 2)1. 
k=i h=i k=i 

The second summation was evaluated in Example 1. The first gives 

2 £ k<-2) = 2(n + 1)(-l)/(-1) + C. 

Altogether, the result is 
-2/(n +2) - 1/4 + 1/[2(n + 2)(n + 1)1 + C. 

Setting n = 1, 1/6 = -2/3 - 1/4 + 1/12 + C so that C = 1 
n 

£ (2k - 1)/[k(k + 1)(k + 2)1 = 3/4 - 2/(n +2) + 1/[2<n +2)(n + 1)1. 
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DIFFERENCE RELATION FOR A PRODUCT 

Let there be two functions f(n) and g(n). Then 

A f(n)g(n) = f(n + 1)g(n + 1) - f(n)g(n) = f(n + 1)g(n + 1) - f(n + 1)g(n) + f(n + 1)g(n) - f(n)g(n) 

= f(n + 1)Ag(n)+g(n)Af(n). 
This will be found useful in a variety of instances. 

SUMMATIONS INVOLVING GEOMETRIC PROGRESSIONS 

A geometric progression with terms ar can be summed as follows: 

]T ar^1 = y(n), Ay(n) = arn 

k=l 

But Arn = rn+1 - rn = rn(r - 11 Hence 

y(n) = Y, ar = A (arH) = arH/(r- V + c-
k=l 

Setting n = 1, a = ar/(r - 1) + C so that C = -a/(r - 1). Hence, 

£ ar1*"1 = a(rn- 1)/(r- 1). 
k=i 

The summation 

£ krk = <p(n), A#(n) = (n + 1)rn+\ A(nrn+1) = (n + 1)rn+l(r- 1) + r n+l 

uct formula on page 8 M 

(n + 1)rn+l = A [nrn+1/(r - 1)] - rn+1/(r - 1). 
using the product formula on page 8 with the first function as n and the second as rn+1. 

HenCe A~1(n + 1)rn+l = nrn+1/(r - 1) - rn+1/(r - 1)2 + C. 
Setting n = 1, r = r2/(r - 1) - r2/(r - 1)2 + C; C = r/(r - V2. Accordingly 

£ krk = nrn+1/(r - 1) - rn+1/(r- 1)2 + r/(r - 1)2 . 
k=l 
5 

EXAMPLE. ]>? k*3k = 1*3+2*9+3*27 + 4*81+5*243 = 1641. 
k=l 

By formula 5*36/2 - 36/4 + 3/4 = 1641. 
FIBONACCI SUMMATIONS 

A Fibonacci sequence is defined by two initial terms Ti and T2 accompanied by the recursion relation 

Tn+1 ~ Tn + Tn-1 • 
SUM OF THE TERMS OF THE SEQUENCE 

n 
£ Tk = <p(n), Ay(n) = Tn+1, ATn = Tn+1 - Tn = Tn_t . 

k=l 
Accordingly n 

k=l 

Setting n = .1, Ti = T3 + C or C = Ti - T3 = -T2 
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2 Th - Tn+2 - T2 

SUM OF THE SQUARES OF THE TERMS 

£ T2
h = *(n), A<p(n) = T2

n+1 . 

The anti-difference bears a strong resemblance to integration in the differential calculus. Just as we know integrals 
on the basis of differnetiation so likewise we find anti-differences on the basis of differences. Thus we try various ex-
pressions to see whether we can find one whose difference is the square of Tn+i. 

A Tn Tn+i = Tn+t Tn+2 - Tn Tn+t = Tn+i (Tn+2 - Tn) = Tn+1. Hence 

Setting/? = a, r f = TaTa+1+C 
k=Oi 

c - Ta(Ta- Ta+i) TaTa_i, Yl Tk ~ TnTn+l ~ TaTa-i. 
k=a 

SUMMATION OF ALTERNATE TERMS 
n 

J ] T2k+a = V("h Aip(n) = T2(n+l)+a', ^2n+a = T2n+2+a~ T2n+a = ^n+l+a-
k=m 

Hence 

A T2(n+l)+a = T2n+l+a + C* ] T T2k+a = ^2nH+a + ^-
k=m 

Setting k = m, 

T~2m+a ~ T2m+l+a + C' Y ^2k+a ~ ^2n+l+a~ ^2m-l+a 
k=m 

SUM OF EVERY FOURTH TERM 
n 

2 T4k+a = $(n), A<pM = T4n+4+a 
k=l 

A 7~4n+a = T4n+4+a ~ 7~4n+a = ^4n+3+a + "^4n+2+a ~ ^4n+2+a + T~4n+l+a = ^4n+3+a + ^4n+l+a 
To meet this situation we introduce a quantity 
M ^n = Tn-1 + Tn+1 . 
Now 

Vn-1 + Vn+l = Tn_2 + Tn + Tn + Tn+2 =-Tn„i + Tn +2Tn + Tn + Tn+i = 5Tn . 

To obtain a difference which gives T we start with V. By a process similar to that for T 

Consequently, A "4"+fl = V4n+3+a + V4n+1+a = 5Un+2+a' 

n 
A " ' T4n+4+a = (V4n+2+a>/5 + C = £ T4k+a • 

k=l 
Setting n = 1, 

n 
0 = T4+a - V6+a/5, Yl T4k+a = (Un+l+a + l~4n+3+J/5 ~ <T5+a + ^7+J/^ + T4+a • 

k=l 
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EXAMPLE. We use the terms of the sequence beginning 1,4. 
1, 4, 5,9,14, 23, 37, 60,97,15:7, 254,411, 665,1076,1741, 

2817,455M375,11933,19308, 31241, 50549,81790,132339, 214129, 
346468,560597, 907065,1467662,2374727 . 

Leta=Z 
5 

2 T4k+2 = T6 + T10 + T14 + T18 + T22 =23+157+1076 + 7375 + 50549 = 59180. 
k=l 

By formula we have 
(T23 + T25)/5-(T7+T9)/5 + T6 = (81790 +214129)75- (37 + 97)/5 + 23 = 59180. 

SEQUENCE WITH ALTERNATING SIGNS 
n 

£ <-1>kT2k+a = *pM, &<P(") = (-l)n+1T2„+2+a, V2n+a = T2n+l+a +T2n-1 +a 
k=m 

A(-DnV2n+a = (-Dn+lV2n+2+a-(-1)nV2n+a = (-1)n+l[V2n+2+a+V2n+J = (-1)n+15T2n+1+a. 
Hence 

£ <-1>nT2k+a = (-Dn(V2n+1+J/5 + C = (-Dn[T2n+a + T2n+a+2]/5 + C. 
k=m 

Let n = m. 
(-1)mT2m+a

 = (-Dm [T2m+a+T2m+2+J /5 + C 

E (' VhT2k+a = (- Vn[T2n+a + T2n+a+2]/5 + (- 1)m+l [T2m+a + T2m+a+2]/5 + (- 1)mT2m+a. 
k=m 

Using the 1,4 sequence once more 
7 

Jl (- DhT2k+3 = -T9 + T11-Ti3 + T15-T17 = -97+254 - 665 +1741- 4558 = -3325. 

By formula we have 
-(T17 + Ti 9)/5 + (T9 + Ti t )/5 -T9 = -(4558 + 11933)/5 + (97 + 254)/5 -97 = -3325. 

GEOMETRIC-FIBONACCI SUMS 
POWER of 2. 

y 2kTk = <p(n); Atp(n) = 2n+1Tn+1 

A2nTn = 2n+1Tn +2nTn = 2n(2Tn.1 + Tn) = 2nVn, 
where we have used the product relation on page 8 and introduced the sequence defined by 

Vn = Tn_i + Tn+i. 
Since L2nVn = 5*2nTn (following the same steps as for Tn) 

ip(n) = A-1(2n+1Tn+1) = 2n+1Vn+1/5 + C. 

Setting/?^ 7,2T1±4V2/5 + C. Hence 
n 

£ 2kTk = 2n+1(Tn + Tn+2)/5 + (6T1-4T3)/5. 
k=l 

EXAMPLE. 
5 

12 2kl~k = 2*1 + 4*4 + 8*5+16*9+32*14 = 650 (1,4 sequence). 
k=l 
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By formula [26(14 +37) +6-4*5]/5 = 650. 
THE SUMMATION 

n 
E 'kTk. 

The direct approach leads to an apparent Impasse. We wish to find the inverse difference oirn+1Tn+i. Assume that 
it is of the form 

A[rkTn+i+rnn]. 

This approach parallels what is done in the solution of differential equations. k,j, and A are undetermined constants. 
Taking the difference and setting it equal to rn+1Tn+i we have 

A[rk+1Tn +r)+iTn-t +rk(r- l)Tn+1 +rHr- 1)TJ = rn+1Tn+1. 

Replacing 7"w_^ on the left-hand side by Tn+i - Tn and equating coefficients of Tn+i and Tn gives: 

A [rk(r -1) + ri+1] = rn+\ rk+1 + rHr - D - r>+1 = 0. 

From the second/ = k + 1. Then the first gives 

A[rk+1-rk+rk+2J = rn+1. 

Letting k = n + 1 and A = 1/(r2 +r- 1) establishes equality. Hence 

E rkjk = (rn+1Tn+i +rn+2Tn)/(r2+r- 1) + C, C = (-r2T0-rTt)/(r2+r- 1) 

n 
£ rkTk = [rn+lTn+l+rn+2Tn-r2To-rTl]/{r2+r-1). 
k=l 

EXAMPLE (1,4 sequence) 
5 

£ 3kTk = 3*7+32*4+33*5 + 34*9 + 3s*74 = 4305. 
k=i 

By formula, 

THE SUMMATION 

(36*23+37*14-27-3)/11 = 4305. 

FIBONACCI-FACTORIAL SUMMATIONS 

£ kTk = *M 
k=i 

Ay(n) = (n + 1)Tn+l 

AnTn = (n + 1)Tn~l + Tn 

AnTn+2 = (n + 1)Tn+l + Tn+2 

n 
A~Un + 1)Tn+l = nTn+2 - Tn+3 + T3+C = £ kTk 

k=i 

in which we have used the formula 
A~ Tn+2 = Tn+3- T3 

n = 1 gives 

Tt = T3-T4 + T3+C; C = 0 
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so that 
n 

V kTk = nTn+2-Tn+3 + T3. 

Note that this is also A~1(n + 1)Tn+l, a fact that is used in the next derivation. 
EXAMPLE (1,4 sequence) 

5 
J2 kTk = 1*1+2*4+3*5 + 4*9 + 5*14 = 130. 

k=l 
By formula 5*36 -60 + 5= 130. 

THE SUMMATION 

i k(2hh = spin) 
k=l 

A^W = (n+10Tn+1 

&n(2hn+2 = (n + lPhn+1 +2nTn+2 

£ k(2)Tk = n(2)Tn+2 - 2(n - 1)Tn+3 + 2Tn+4 -2T4 + C 
k=l 

in which the formula for the previous case was used. 
torn =2, 

2T2 = 2T4 - 2T5 +2T6 - 2T4 + C; C = -2T3 

£ k(2hk = n(2hn+2 - 2(n - 1)Tn+3 +2Tn+4 - 2T4 - 2T3 

k=l 

VERIFICATION (1,4sequence) 

5 
J2 k(2)Tk = 1*0*1+2*1*4 + 3*2*5 + 4*3*9 + 5*4*14 = 426. 

k=l 
By formula 

For/7 = J, 

5*4*37-2*4*60+2*97-2*9-2*5 = 426. 

THE SUMMATION 

£ k^Tu = <p{n) 
k=i 

A$(n) = {n + 1)(3>Tn+i 
^(3)Tn+2 = (n + D(3)Tn+1 +3n(2kn+2 

E k(3)rk = n(3)Tn+2-3(n-1)(2)Tn+3+6(n-2)Tn+4-6Tn+5+6T6 + C. 
k=l 

6T3 = 6T5-6T6+6T7-6Tg + 7T6 + C; C = 6T5 

£ k<3hk = n(3hn+2 - 3(n - 1Phn+3 + 6(n - 2)Tn+4 - 6Tn+5 + 6T7 . 
k=l 
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VERIFICATION (1,4 sequence) 

6 
]T k(3)Th = 6*5 + 24*9 + 60*14+720*23 = 3846. 
k=l 

By formula for n = 6, 
120*60 - 60*97 + 24* 157 - 6*254 +6*37 = 3846. 

The formulas for the next two cases are written down and the pattern that is emerging is noted. 

n 
£ K(4)Th = n(4hn+2 - 4(n - 1)(3)Tn+3 + 12(n - 2phn+4 - 24(n - 3)Tn+5 +24Tn+6 - 24T9 • 
k=l 

]T k&Tk = n(5hn+2-5(n- 1)(4hn+3+2Q(n -2)(3hn+4- 60(n -30Tn+s 

k=l 
+ 120(n - 4)Tn+6 - 120Tn+7 + 120Tt t . 

The pattern may be described as follows: 
For the rth difference: 

1. The first term \sn(r)Tn+2 . 
2. For the n portion, both n and r go down by 1 at each step. 
3. For the T portion the subscript goes up by 1 at each step for /* + 1 steps. 
4. The signs alternate. 
5. The coefficients are the product, respectively, of the binomial coefficients for r by 0!, 1\,2l,—,r!, respectively. 
6. The last term is rlT2r+i with sign determined by the alternation mentioned in 4. 

With the aid of these factorial formulas it is now possible to find polynomial formulas. For example. 

S ^ = E [k(4)+6k(3) + 7k(2) + k(1)]Tk . 
k=l k=i 

The first few formulas for the powers are given herewith. 

n 
X k2Tk = (n2+2)Tn+2-(2n-3)Tn+3-T6 
k=i 

n 
£ k3Tk= :(n3 + 6n- 12)Tn+2 - (3n2 - 9n + 19JTn+3 + 6T6 + T3 

k=l 

n 
Y, k4Tk = (n4 + 12n2~ 48n +98)Tn+2 - (4n3 - 18n2 + 76n - 159)Tn+3 - 13T8 - 11T7 

k=l 

n 
]T k5Tk = (n5 +20n3 - 120n2+490n - 1020)Tn+2 - (5n4 - 30n3 + WOn2 - 795n + l651)Tn+3 

k=i 
+ 120T9+30T6 + T3 . 

In these formulas considerable algebra has been done to reduce the number of terms down to two main terms by 
using Fibonacci shift formulas. 

GENERAL SECOND-ORDER RECURSION SEQUENCES 
Given a second-order recursion sequence governed by the recursion relation 

Tn+1 = PlTn +P2Tn-l 
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to find 
n 

Y, Tk = <p(n) 

A^p(n) = Tn+1 

^[Tn+PlTn-ll = Tn+1+P2Tn-Tn-P2Tn„1 = (Pi+P2-DTn. 
Provided P± + P2 -1 is not zero, 

n 
£ Tk = (T„+i + P2 T„)/(P2 +Pi-1) + C. 

k=l 
For/7= 1, 

Tt = (T2+P2T1)/(P2+Pi- D + C 
C = [(Pl-1)T1-T2]/(P2+Pi-D 

n 
£ Tk = [Tn+1 +P2Tn + (Pl ~ DTl - T2]/(P2 +Pt - 1). 
k=l 

EXAMPLE: Tn+1 = 5Tn-3Tn_t 

3 ,7 ,26 ,109 ,467 ,2008; 
5 

J2 Tk = 3 + 7 + 26 + 109+467 = 612 . 
k=l 

By formula (2008 - 3*467 + 4*3 - 7)/(5 - 3 - 1) = 612. 
SUM OF TERMS OF A THIRD-ORDER SEQUENCE 

Such a sequence is bound by a recursion relation of the form 

Tn+1 = PlTn+P2Tn-l+P3Tn-2. 
If 

n 
]T Tk = ip(n), A0/W = Tn+i 

k=i 

A (Tn + IP3 + P2)Tn-l + P3 Tn-2) = Tn+1 + &3 + ^Tn + P3 1n-1 1n 
= Tn+1 + (P3 +P2-1)Tn- P2 Tn_t - P3 Tn_2 = (Pi +P2+P3-DTn. 

Hence \\Pi+P2+P3-\ is not zero, 

E ffe = {T»+1 + (P3 + P2)T" + P3 Tn-ilMPl +P2+P3-D + C 
k=l 

Ti+T2 = [T3+(P3+P2)T2+P3T1]/(P1+P2+P3-1) + C 

C = [(Pt +P2- 1)Ti + (Pi - 1)T2 - T3]/(Pi +P2+P3-1) 
n 

E Tk = [Tn+l+(P3+P2)Tn+P3Tn-i + (Pi+P2-1)Tl+(Pl-1)T2-T3]/(Pl+P2+P3-1) 
k=l 

EXAMPLE. Tn+i = 3Tn + 2Tn_t - Tn.2 

1 + 2 + 4 + 15 + 179 = 252. Next term is 624. 
By formula (624 + 179 - 51 + 4* 1 + 2*2 - 4)/3 = 252. 
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FOURTH-ORDER SEQUENCES 
The recursion relation is 

Tn+i = PlTn+P2Tn-l+P3Tn-2+P4Tn-3. 
An entirely similar analysis as was made for third-order sequences leads to the formula 

Tk = [Tn+l+(P2+P3+P4)Tn+(P3+P4)Tn-l+P4Tn-2]/(Pl+P2+P3+P4-l) + C, 
where 

C = [(Pi +P2+P3- VTi +(Pt + P2-1)T2 + (Pl-1)T3-T4]/(XPi- 1). 

EXAMPLE. Tn+1 = 3Tn + 2Tn.t - 4Tn_2 + 3Tn.3 

1 + 3 + 4 + 6 + 17+ 56 + 190 + 632 = 909. Next term is 2103. By formula (2103 + 632 - 190 + 3*56 + 4*3 + 2*4 
- 6 ) / 3 = 909. 

FIBONACCI-COMBINATORIAL FORMULAS 

These are closely related to the Fibonacci-factorial formulas discussed on pp. 13-15. However the added simpli-
city of these formulas merits a listing of the first few to show the pattern. 

£ (5)7* = [nAT„+2 - Tn+3 + T3, £ (2I Tk = (2) Tn+2 -["J1 \Tn+3 + Tn+4 - T5 
k=l ' k=l 

£ [)\Tk= \n
3)T„+2-["]%+! +[n J 2)Tn+4-Tn+5 + T7 

n 

S (4 )Tk = ( 4 ) ^ + 2 ~ ( W 7 )Tn+3-h\^ \Tn+4-\~~i )Tn+5 + Tn+6 ~ T9 
k=l 

FIBONACCI EXTENSION: SUMMING MORE TERMS 

Sequences governed by 
Tn+l - Tn + Tn-t + Tn_2, 

where three rather than two preceding terms are added at each step have a summation formula 

n 
E Tk = (Tn+l +2Tn + Tnrl + Ti- T3)/2. 
k=l 

For sequences governed by 
Tn+1 = Tn + Tn_i + Tn„2 + Tn_3 , 

where the four previous terms are added 
n 

£ Tk = (Tn+l +3Tn +2Tn_t + Tn_2 +2Tt + T2- T4)/3. 
k=i 

Where five previous terms are added at each step: 
n 

Y, Tk = (Tn+l +4Tn +3Tn„t + 2Tn_2 + Tn_3 +3Tt +2T2 + T3- T5)/4. 
k=l 

Where six previous terms have been added at each step: 
n 

£ Tk = (Tn+l +5Tn+4Tn_1 +3Tn_2 +2Tn_3 + Tn_4 +4Tt +3T2 +2T3 + T4- T6)/5. 
k=i 
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EXAMPLE. 
1 + 2 + 4 + 5 + 7 + 8 + 27 + 53 + 104 + 204 = 415. 

By formula 
(403 + 5*204 + 4*104 + 3*53 + 2*27 + 8 + 4 + 6 + 8 + 5 - 8 1 / 5 = 415. 

CONCLUSION 

Finite differences have wide application in formula development. There are, of course, many situations in which 
the use of this method leads to difficulties which other procedures can obviate. But where applicable the results are 
often obtained with such facility that other procedures seem laborious by comparison. 

A GOLDEN DOUBLE CROSTiC 

MARJORIE BICKNELL-JOHNSON 
Wilcox High School, Santa Clara, California 95051 

Use the definitions in the clue story which follows to write the words to which they refer; then enter the appropri-
ate letters in the diagram to complete a quotation from a mathematician whose name appears in the last line of the 
diagram. The name of the book in which this quotation appeared and the author's last name appear as the first letters 
of the clue words. The end of each word is indicated by a shaded square following it. 

CLUE STORY 

The mystic Golden Section Ratio, (1 + >/5 )/2, called (A-1,A-2) (the latter most commonly), occurs in 
several propositions in (A-3, A-4) on Sine segments and (A-5) This Golden Cut fascinated the an-
cient Greeks, particularly the (D-1) who found this value in the ratio of lengths of segments in the (D-2) 
and (D:3) and who also made studies in (D-4) . The Greeks found the proportions of the Golden Rec-
tangle most pleasing to the eye as evidenced by the ubiquitous occurrence of this form in art and architecture, such 
as (C-1) or in sculpture as in the proportions of the famous (C-2) ; however, they may fiave been 
copying (C-3) for the Golden Proportion occurs frequently in the forms of living things and is closely re-
lated to the growth patterns of plants, as (C-4, C-5, C-6) in which occur ratios of Fibonacci numbers. The 
Golden Section is the limiting value of the ratio of two successive Fibonacci numbers (named for (G-1) ), be-
ing closely approximated by the (G-2, G-3) 

By some mathematicians, the beauty of the (N) relating to the Golden Section is compared to the theorem of 
the (D-1) and to such results from projective geometry as those seen in Pascal's "Mystic (B) __ " 
or even in the applications of mathematics in the Principia Mathematica of (I) while the constant (1 + V&)/ 2 
itself is rivalled by (E-1) and (E-2) 

Unfortunately, not all persons find mathematics beautiful. (H-1) was one of the four branches of arithme-
tic given by the Mock Turtle in Alice in Wonderland, and the card player's description of the sequence 2 ,1 ,3 ,4 , 7, 

,18, 29, 47, — would be (H-2) while some have to have all mathematics of practical use, such as in 
reading an (M) 

[The solution appears on page 83 of the Quarterly.) 


