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1. Let g be a rational integer such that A = 4y3 + 27 is squarefree and let w denote the real root of the
equation

(1.1) X rgx—1=0 g >1).

Clearly w is a unit of the cubic field Q(w).
Following Bernstein [1], put

(1.2) w" = rn+s,,w+t,1w2 (n > 0)
and
(1.3) w™ = xn+ynw+znw2 (n > 0).

Making use of the theory of units in an algebraic number field, Bernstein obtained some combinatorial identi-
ties. He showed that

Sp = Int2, tn T n+l, Y = Xn-2, 2Zn = Xn-1

and
. 2 -
(1.4) 3 rut = TAgu” ) DD L —
n=0 7+gu—u3 n=0 7—gu2—u3

Moreover, it follows from (1.2) and (1.3) that

(15) ‘ rrzl_rn—lrn+1 = Xpn-3
X~ Xn-1Xn+1=I'n+3
Explicit formulas for r,, and x,, are implied by (1.4). Substituting in (1.5) the combinatorial identities result.
Since A =Zg3 +27 is squarefree for infinitely many values of g, the identities are indeed polynomial identities.
The present writer [2] has proved these and related identities using only some elementary algebra. For ex-
ample, if we put
T+agx? = x? = (1= ax)(1 = Bx)1—yx)

and define
0, = a'+p"+y" (all n)
and
N (=0
Pn =V x,, (h=0"

then various relations are found connecting these quantities. For example
(1.6) OmOy = Om+n+ Om-nO0-n — Om-2n -

Each relation of this kind implies a combinatorial identity.
In the present paper we consider a slightly more general situation. Let v, v denote indeterminates and put

T—ux+wx? =x> = (1= ax)(1=Bx)(1—yx).
We define o,, by means of
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12 RECURRENCES OF THE THIRD ORDER
(1.7) 0, = a"+B" +9" (all n)

and p,, by

(1.8) 0, = Ad”" +BB" +Cy" (all n),

where A, B, C are determined by

7 _ A 4 B, c
T—ux+ux?—x3 T-Byx T-yax 1-afx
Thus
19 D R—
n=0 T—vx+ux*—x
and
ha 2
(1.10) T pux™ = Touxtex”
n=0 7—ux+vx2—x3
while
oo 2
(1.11) S opx" = _3—Zuxtwx”
' " T ux +ux? — 53
d n=0 ux +vx< —x
an
. -n
n=0 7——VX+UX2-—X3

Sincea® —aZu+av—1-= 0, it is clear from the definition of g, p,, that

On+3 = UOp+2 *VOu4q — Oy = 0
and
Pn+3 = UPn+3 T VPu+1 —Pn = 0
for arbitrary n.
If we use the fuller notation

O, = Ouluy), Pn = Puluy),
it follows from the generating functions that
(1.13) O_nluy) = o,(vu), Puluy) = ps  (vu).
We show that
(1.14) OmOn = Om+n* Om-nO-n — Om-2n »
for arbitrary m,n. Similarly
(1.15) OmPn = Pm+n * Pm-nCG-n — Pm-2n .
As far the product p,, p,,, we have first
(1.16) PP = Pns1Pnt = P2n6 — Pr-30n3 -
The more general result is
(1.17) 20mPn — Pm+1Pn-1 — Pm-1Pn+1

= Om-30n-3 — Om+n-6 — Om-3Pn-3 — On-3Pm-3 * 2Pm+n-6 ,

again for arbitrary m,n.

[FEB.

Each of the functions 0,,(u,v), 0_,,(u,v), p,(u,v), p_,(u,v), n > 0,is a polynomial in u,v. Explicit formulas
for these polynomials are given in (2.9), (2.10), (4.5), (4.6) below. Moreover Opn is @ polynomial in 0y, 0_y,;

indeed we have
(1.18) Opnluy) = 0,(0,, 0_y) p=0).

The corresponding formula for Ppn is somewhat more elaborate; see (4.3) and (4.4) below.
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Substitution of the explicit formulas for 0, 0_,,, p», P, in any of the relations such as (1.14), (1.15),
(1.16), (1.17) gives rise to a large number of polynomial identities.

The introduction of two indeterminates v, v in 0,, p,, leads to somewhat more elaborate formulas than
those in [1]. However the greater symmetry implied by (1.13) is gratifying.

2. It follows from

(2.1) T—ux+w? —x? = (1= ax)(1 - Bx)1 — w)
that

a+ f +v=u
(2.2) Br+yataf =v

afy =1
Since aBv =1, (2.1) is equivalent to
(2.3) T—ux+ux? =x% = (1= Byx)(1 = yax)(1 - apx).
We have defined

(2.4) 0, = a"+f"+y",

for n an arbitrary integer. Thus

T—ax T—ux+wx? - x3

i o =Y L= Z(1=Bll=yx)
n=0

which, by (2.2), reduces to

(2.5) T ot = S 2wt
’ n
n=0 T—ux+wx?=x3
Similarly
i X" =3 1 _(1—apx)(1—ayx)
n=0 1= By T—wx+ux?—x>
so that
(2.6) i g x" = Mﬂﬁi
) -n
n=0 T—wx+ux?—x°

Using the fuller notation
0, = ouluyv), 0., = o_yluvl,

it is clear from (2.5) and (2.6) that
(2.1 O_nluyv) = o,lvul.
By (2.1), a, B, v are the roots of

22w rvz-1-=0
and so
(2.8) Op+3 —UOy42 +VOyey — 0y = 0,
forall n.
Next,
- had A = Ry
(1—uxtw? =) = T ix—w?ex) = 5 (=) A
k=0 ij,k=0

=X X" X (- 1)tij.k)uv?

n=0 i+2j+3k=n
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where
S (/+[+k}_l
(k) = S
Thus, by (2.5),

0p=3 2 (~Viijkuvi-u Y ~1)Gjki+v Y (—1)ifij kJu'vi
i+2j+3k=n i+2j+3k=n-1 i+2j+3 k=n-2

= X =1l - 2= 1 k) = (-1, k) .

i+2j+3k=n
Hence
(2.9) o= L 1) ke (> 0.
i+2j43 k=n at
By (2.7) the corresponding formula for o_,, is
_ _ ] n . i ]
(2.10) oy > (-1 7R (k' (n > 0).

i+2j+3k=n

It follows that, for n prime, coefficients of all terms—except the leading term—in o,, are divisible by n.
Returning to (2.4), we have

Om0p = 2a™Za" = 2a™ + Ta"B" +7") = Oppgn + Za@ B +ay ™)

= O+ 20" Ma_, — ™),
which gives

(2-1 1) OmOn = Om+nt Om-nO0-n — Om-2un,

valid for all m, n. Replacingm by m +2n, {(2.11) becomes

(212) Om+3n — Om+21 0y + Opinn Oy — Oy = g.
Form =n, (2.11) reduces to
(2.13) 05 = 02, +20_, .

Hence, form =2n,
GnO2n = 03+ 04 0_y — 3,
so that
(2.14) O3y = oﬁ—b’ono_n+3.
To get the general formula we take
7 S =B )1 —y"x)  _ 3= 20px+04x

Z Upnxk = Z -
p=0

2

1-a"% (1—a"x)(1-B"x)1—+"x) 1-0,x+ O_x?—x°

Comparing with (2.5), it is evident from (2.9) that
(2.15) Opn = 2o (-1} IT/P’L—/( (ij ko' ol (v > 0.
i+2j+3k=p

Substitution from (2.9) and (2.10) in (2.11), (2.12), (2.13), {2.14), (2.15) evidently results in a number of
combinatorial identities. We state only

@ X ey - D 1 22 kv 5 1) e (ki)
i+2j+3k=n / i+2j+3k=2n / i+2j+3k=n / >0
n = .
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3. Put
(3.1) ! -_A _,_B ,_C
T—wx+ux? - x3 T-Byx  T—-vyax T-afx ’
where 4, B, C are independent of x. Then

(3.2) (1-a?B)(1—-a’yh = 1.
Since

(1—a?B)(1—a’yl = 7—a2(6+f'y)+a4{%’y= 1-d*lu-a)+d’ = 1-d?u+2d°,

it follows from @’ — ay +av — 1=0that

(3.3) A= T
3-2av+ay
with similar formulas for 8 and C.
Replacing x by 7/x in (3.1) and simplifying, we get
3
X Ax Aax A
= _ = = - A.
1—ux+ux? —x° 237_)( Z 1-ax Z -ax Z
Since 2 A =1, it follows that

2

1—ux+vx - A
(3.4) — =¥ A

7—ux+vx2—x

We now define p,,, p_,, by means of

(3 5) _7:_gi(_+_l/i(2__ = i P )(1/l

. n
T—ux+w?—x3 n=0

and

(3.6) S S— E o-nx™ .

7—vx+ux2—x3 =0
It then follows from (3.1) and (3.4) that
(3.7) Pop = DAa"

foralln.
By (3.6), we have, for arbitrary m and n,

PmbPn = TAa". T Aa" = EAZCLm+n+EBC( m,yn+,}mﬁn)'

Thus
Pmt1Prot = EAZam-f—n — Bc(ﬁm+1,yn—1 +,ym+1ﬂn—1},
so that
(3.8) Ombn— P Pret = ZBC{(B™y" +y"6") = (™" 4y g )}

The quantity in braces is equal to
—(5—7/(ﬁm7"'1 _ymﬁn—i}.
Hence
PmPn — Pm+1Pn-1 = *ZBC(B—Y)(Bm’yn_I _YmBn_J)

V ombn— Pmt1Pnrr = —ZBCB-YIB™Y™ —y ™)
It follows that
(3.9) 20mPn — Pm+1Pn-1 — Pm-1Pn+1

= —3BC(B-v Z(ﬁm'l’)’”_j +,Ym—1ﬁn—1) )
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By (3.2),
BCIB—y)? = —Ad?,
so that (3.9) becomes

(3.10) 20mPn — Pm+1Pn-1 — Pm-1Pn+1 = ZA(ﬁm—iYn_j +7m—3ﬁn—3} .
In particular, if m = n, (3.10) reduces to

P2~ pps1pn-g = TAB"H" = TAaH
and so

(3.11) 07— Put1 Pt = Pnts  (alln).
To get a more general result consider
BV "B = (BT U™ ") = (BT 4y = (o — @™ N0y — ) = (O — @)
= OOy — 0@ — 0,0™ — Opppy + 20,
Thus
(3.12) ZAB™" +Y"B) = 04,0, — Ot — OBy — 0B + 2P msn -
Combining (3.10) and (3.12) we get
(3.13) 201 Pn— Pm+1Pn-1 = Pm-1Pn+1 = Om-30n-3 — Om+n-6 = Om-3Pn-3 ~ On-3Pm-3 * 2P m+n-6 -
Form =n, (3.13) reduces to
(3.14) PZ = Prt1Pnt = P2n_6 — On-3Pn_3 +0 pt3.
It is not evident that (3.14) is equivalent to (3.11). This is proved immediately below.

4. We now take
Pm0Oy, = ZAA"Ta" = AT+ TACB +Y) = pyan + ZAC QB — ay")
= Pm+n t EAam_m(a—n —-a™),

which gives
(4.1) PmOn = Pm+n * Pm-n0-n — Pm-2n .

In particular, form =n,
4.2) PnOpn = P2n+0_pn—Pn,
which shows that (3.14) is indeed equivalent to (3.11).

Form =2n, (4.1) gives

P3n = P20y —Pu0O_py*t1 = pnoﬁ — 0p0y+P_pOp—PnO-yn*1.

To get a general formula for Ppn take

oo

i panp = Z: xP Z AaP" = Z A _ _SAM1=B"XN1-Y"x)
p=0 p=0 1—a"x  (1=a"x)(1=-B"x)(1-7"x)

= 1- (011 ‘pn)” +p—nX2
3

71— onx+0_nx2 - X

Then, as in the proof of (2.15), we have

(4.3) Ppn = Cpn— (0, — pn}cp—i,n *P-nlp-2,n (>0,
where
(4.4) o = 2 (-1DHijkldlol,

i+2j+3k=p
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Since

we have in particular

(4.5) pp= 2 (~1ijkldvi (p > 3)
i+2j+k=p-3

and

(4.6) pp = 2 -1kl (p > 0).
i+2j+3k=p

With the fuller notation
Pn = Puluy), P-n = p-nluy),
it is clear from (4.5) and (4.6) that
(4.7) Puluy) = p3_plvu).
Moreover (4.4) becomes
(4.8) Cpn = Ppl0n, 0_p) (b >0).

We may now substitute from the explicit formulas (2.9), (2.10), (4.5), (4.6) in various formulas of Sec-
tions 3 and 4 to obtain a large number of polynomial identities in two indeterminants. To give only one rel-
atively simple example, we take (4.2). Thus

(4.9) { > (—I)j(/;;k)uiv]}{ > (=1 L ik }

—
i+2j+3k=n-3 i+2j+3k=n itk

> (1) Gj k'l — 3 =1k
i+2j+3k=2(n-3) i+2j+3k=n

_q)j N ki ]
* Z (—1) e (ifkV'u (n > 0).
i+2j+3k=n

5. For small n, 0,, and p,, can be computed without much labor by means of the recurrences. Moreover
the results are extended by the symmetry relations
O_nluy) = o,(v,u), Puluy) = p3_nlvul .
A partial check on g, is furnished by the result, that, for prime n,

onpluy) = u” (mod n).
Also, by (2.5),
> 2 2 3
3 01, 1x" = 3-2x+x° _3+tx—x“+x ’
n=0 7—X+X2—X3 1-x*?
which implies

0a(1,1) =3, 04n+1(1,1) = 04,43(1,1) = 1, Ogn42(1,1) = 1.
As for p,,(1,7), we have by (3.5)

> 2

S el Ui = L= XEXT

n=0 T—x+x2-x3 1—x
so0 that
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Panl1,1) = pan+3(1,1) = 1, Pan+1(1,1) = pans2(1,1) = 0.

Table 1
0p=3 071=u, 02=u2-—2v j
03 = u? = 3uv+3 I
04 = vt — P+ 202 vy

05 = u? — 5uy + 5uv? + 5u® — by

0g = u® = 6utv+9u?? +6u° — 2% + 1200+ 3

07 = 77+ 140 + 70 = quv? — 210%0 + P+ 7y

og = u® — 8uby+20u%v? + 8u° — 160%° — 320% v + 2v* + 24uv? + 12u% — 8y
v’ = 9u"v+270°v? +9u® - 3007 - a5utv + 9wt + 54u%0? + 1847

— 92— 270y +3

019 = ul® = 1008y + 350807 + 1007 - 50u*V’ — 60u v + 25u%v* + 10007
— 2% + 25u” — 40u® - 60u?v + 15/° + 10u

09 =

Table 2

po=1 p1=p2=0 p3=1

2
pg=u, ps=u‘-v

Ps = u? —2uv+1

p7 = vt =302 +vZ+ 20

ps = u = 4udy + 3uv? + 3u® - v

P9 = u6—5u4v+6'u2v2+4u3— y3—5u|/+7

P10 = u” = 6u”v+ 10u’v? + 5u? — qu? — 120%v + 3% + 3u
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