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1. Let g be a rational integer such that A = 4g3 + 27 is squarefree and let w denote the real root of the 
equation 
(1.1) x3 +gx-l = 0 (g > V. 

Clearly w is a unit of the cubic field Q(w). 
Following Bernstein [1 ] , put 

(1.2) wn = rn+snw + tnw
2 (n > 0) 

and 
(1.3) w~n = xn+ynw + znw

2 (n > 0). 

Making use of the theory of units in an algebraic number field, Bernstein obtained some combinatorial identi-
ties. He showed that 

sn ~ rn+2> tn ~ rn+lr Vn ~ xn-2f zn = xn-l 
and 

(1.4) £ rnu"= 1+ff"2 . £ xnun 

n=0 1+gu-u3
 n=0 l-gu2-u3 

Moreover, it follows from (1.2) and (1.3) that 

(1 c\ I rn~~ rn-lrn+l = xn-3 
I x

n
 xn~lxn+l rn+3 

Explicit formulas for rn andxn are implied by (1.4). Substituting in (1.5) the combinatorial identities result. 
Since A =4g +27 is squarefree for infinitely many values of g, the identities are indeed polynomial identities. 

The present writer [2] has proved these and related identities using only some elementary algebra. For ex-
ample, if we put 

1+gx2 -x3 = (1-ax)(1-pxJ(l-yx) 
and define 

an = an+$n
 + yn (all/?) 

and 

Pn 
rn (n > 0) 
x_n (n > 0) 

then various relations are found connecting these quantities. For example 

(l.b) OmOn = Qm+n + ®m-nG-n ~~ ®m~2n • 

Each relation of this kind implies a combinatorial identity. 
In the present paper we consider a slightly more general situation. Let u, v denote indeterminates and put 

1 -ux + vx2 -x3 = (1- axHl - 0x)(1 -yx). 

We define on by means of 
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(1.7) on = an+$n + f (all/7) 
and pn by 
(1.8) pn = Aan+B$n+Cyn (all /?), 
where A, B, C are determined by 

1 - A ^ B ^ 

1 - vx + ux - x 
Thus 

(1.9) f P-nXU 

2 _ 3 1 - j&yx / - TOW 1 - aj5x 

2 3 
n=0 1 -VX + UX -X 

and 

(1.10) f ; p„xn - 1-ux+vx2 

while 
n=0 1 - UX + VX2 -X 

3 - 2ux + vx (1.11) £ o„x" = 
n=0 1-UX + VX -X 

and 

(1.12) £ a ^ x " = 3 - * 0 f * £ / * 2 

n=0 l-vx + ux2-x 

Since a 3 - a2*/ * av - 1 = 0, it is clear from the definition of on, pn that 

On+3 - UGn+2 + VOn+1 -On = 0 
and 

Pn+3 ~ "Pn+3 + vPn+1 ~ Pn = 0 
for arbitrary n. 

If we use the fuller notation 
On = On(u,v), pn = Pn(u,v), 

it follows from the generating functions that 

(1.13) 0_n(u,v) = On(v,ll), Pn(u,v) = P3_n(
v,u) • 

We show that 
\ I . IH-; Qm®n = Om+n + ^m-n^-n ~ ^m-2n > 
for arbitrary m,n. Similarly 
U.IOJ @mPn ~ Pm+n + Pm-n^-n ~ Pm-2n • 

As for the product pmpn, we have first 

<1-16) Pn-Pn+lPn-1 = P2n-6 ~ Pn-3 °n-3 • 

The more general result is 

(1-17) ZPmPn - Pm+lPn-1 ~ Pm-lPn+1 

~ °m-3^n-3 ~ ®m+n-6 ~ ^m-3 Pn-3 ~ ®n-3 Pm-3 + *Pm+n-6 > 

again for arbitrary m,n. 
Each of the functions on(u,v), o_n(u,v), pn(u,v), p-n(u,v),n > 0, is a polynomial in u,v. Explicit formulas 

for these polynomials are given in (2.9), (2.10), (4.5), (4.6) below. Moreover opn is a polynomial in an, o_n; 
indeed we have 
(1.18) opn(u,v) = op(on, a_n) (p > 0). 

The corresponding formula for ppn is somewhat more elaborate; see (4.3) and (4.4) below. 
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Substitution of the explicit formulas for on, a_n, pn, p_n in any of the relations such as (1.14), (1.15), 
(1.16), (1.17) gives rise to a large number of polynomial identities. 

The introduction of two indeterminates u, v in on, pn leads to somewhat more elaborate formulas than 
those in [1 ] . However the greater symmetry implied by (1.13) is gratifying. 

2. It follows from 

(2.1) 7 - ux + vx2 - x3 = (1 - ax)(1 - $x)(1 - yx) 
that 

a + j3 + y = u 
fiv + ya + a|3 = v 

a/Jy = / 
(2.2) 

Since a$v= 1, (2.1) is equivalent to 

(2.3) 

We have defined 

(2.4) 

for A7 an arbitrary integer. Thus 

1 -vx + ux2 -x3 = (I - $yx)(1 - yax)(l - afix). 

on = an
+$n+yn, 

E °n*n = E J 
n=0 

1 _ Xd-Md-yx) 
_ a x l-ux + vx2-x3 

which, by (2.2 

(2.5) 

Similarly 

so that 

(2.6) 

), reduces to 

f 
n=0 

n=0 

o.nx
n --

oo 

n=0 

onx
n = 

r V 
2L ;. 

0-n*n '-

3 - 2ux + vx 

7 - ux + vx2 -x3 

1 _(1-apx)(1-ayx) 

~^x 1-vx + ux2-x3 

3 - 2vx + ux 

7 - vx + ux2 - x3 

Using the fuller notation 

it is clear from (2.5) and (2.6) that 

(2.7) 

By (2.1), a, |3, v are the roots of 

and so 

(2.8) 
for all n. 

Next, 

on = on(u,v), o_n = G_n(ufv), 

o_n(u,v) = on(v,u). 

z3 -uz2 + vz- 1 = 0 

On+3 - UOn+2 + VOn+i -Gn = 0, 

(1-ux + vx2-x3)-1 = E (ux-vx2+x3)k = £ (-l)Hi,j,k)uW+2i+3k 

k=0 i,j,k=0 

= E *n E (-DUilklu^, 
n=0 i+2j+3k=n 
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where 

Thus, by (2.5), 

(jjk) = (Lti±klL 

on = 3 E (-Uj(/,f,k)uii/J-2u E <-1)jUk)ulvi + v E (-V'OjMuV 
i+2j+3k=n i+2j+3k=n-l i+2j+3k=n-2 

E (-1)juivi{3(i,j,k)~2(i-l,j,k)-(i,j-l,k)} . 
i+2j+3k=n 

Hence 

(2.9) °n = E <-» jTlTk ft/-^V <n>oh 

i+2j+3k=n ' 
By (2.7) the corresponding formula for o_n is 

(2.10) £ <~1>j jr^Tk (i'i>k)viuJ <n > 0). 
i+2j+3k=n ' 

It follows that, for/7 prime, coefficients of all terms-except the leading term-in on are divisible by n. 
Returning to (2.4), we have 

omon = 2am2an = 2am+n + 2 a w ( / r +yn) = om+n + 2am~n(anpn+anrn) 
= om+n + i:am~n{a.n-^yn), 

which gives 
\L. I 1/ Om On = Orn+n + Om^n G_n — Om_2n > 

valid for all m, n. Replacing m by m + 2n, (2.11) becomes 

(2.12) °m+3n —°m+2n°n +Gm+n°-n-°m = 0. 

For m = n, (2.11) reduces to 

<*n = °2n+2°-n • 

°n °2n = 03n + °n °~n ~ 3, 

03n = °i-3ono_n+3. 

(2.13) 

Hence, for/77 = 2n, 

so that 

(2.14) 

To get the general formula we take 
~ k _ v ./ = S(7-(3nx)(1-ynx) = 3-2onx + o_nx2 

Comparing with (2.5), it is evident from (2.9) that 

(2.15) opn = E (~Vj jjf^ (U,k)Jn<jln (p > 0). 
i+2j+3k=p 

Substitution from (2.9) and (2.10) in (2.11), (2.12), (2.13), (2.14), (2.15) evidently results in a number of 
combinatorial identities. We state only 

(2.16) £ <^JJThUk>uivi 

i+2j+3k=n ' 
' i+2j+3k=2n ' i+2j+3k=n 

(n > 0). 
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3. Put 

(3.1) 1 

1 - vx + ux -x: 

B + C 
]-@yx 1-yax l-a$x ' 

where A, B, C are independent of x. Then 

(3.2) 
Since 

(1-a2$)(1-a2t>()A = / . 

(1 - a2p)(1 - a2y) = 1 - a2(j3+y) + a4!fy = 1-a2(u-a) + a3 = 1-a2u+2a3
! 

3 ? 
it follows from a — a u + av - 1 = 0 that 
(3.3) A = 1~— 

3 - 2av + a2u 
with similar formulas for B and C. 

Replacing x by 1/x in (3.1) and simplifying, we get 

"3 V Ax = Y* ^ax = V ^ _ V* A 
Z-r Qy- x Z-r / _ Qjf Z-r 1_ax LJ 7 -t/A-^-i/x2 - x3 

Since 2/4 = /, it follows that 

(3.4) 

07-

1 - ux + vx2 

1 - ux + vx - x 
- = T - j L - • 
3 ^ 1 -ax 

We now define pn, p_n by means of 

(3.5) 

and 

(3.6) 

2 
1 - ux + vx 2 T = 2 P«*n 

1-UX + VX -X n=0 

? 3 
1 - vx + ux - x n=0 

= E P-n*n • 

It then follows from (3.1) and (3.4) that 

(3.7) pn = 2Aan , 
for all n. 

By (3.6), we have, for arbitrary m and n, 

pmPn = VAam.?,Aan = 2A2am+n + J^BC(0myn+ ^pn). 
Thus 

Pm+lPn-i = ̂ A2am^ = fiCrV^n^^i, 
so that 

(3.8) PmPn-Pm+lPn-l = S f l C { ^ m 7 " + V " l H " ft3M V ^ ^ " " " V " ^ } 
The quantity in braces is equal to 

Hence 

It follows that 
(3.9) 

PmPn-Pm+lPn-l = -2 BC(P-y)(@myn~ - y m 0 W ~ ) 

PmPn-Pm-lPn+l = ^BCfP-yHP^'1 - J ^ ' 1 ) 

2PmPn — Pm+1 Pn-1 — Pm-1 Pn+1 
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By (3.2), 
BC(fi-y)2 = -Aa2, 

so that (3.9) becomes 
(3.10) 2pmpn-pm+1pn_1-pm_lPn+1 = HA(pm-3

7
n-3 +ym-3r3). 

In particular, if m = n, (3.10) reduces to 

and so 
Pn-Pn+lPn-1 = ^AP T = ^Aa 

(3.1D Pn-Pn+lPn-1 = P-n+3 (all /7). 

To get a more general result consider 
pmvn+impn = {?m + ym)(^n +yn} _ (^m+n + ym+n} = ^ _ ^ ^ _ ^ _ ^ ^ __ a m ^ ; 

_ w m , n m+n 
YYl Yl Ytl — Yl — YYl+~Yl ^-^J « 

Thus 

(3.12) S d f l T V +7m/Jw; = a m a n - a m ^ - am i3n - a n i 3 m ^ ^ p m ^ . 

Combining (3.10) and (3.12) we get 

(3.13) 2pmpn- Pm+iPn-l - Pm-lPn+1 = Om-3°n-3 ~ °m+n-6 ~ ^m-3Pn~3 ~ °n-3Pm-3 + 2Pm+n-6 • 

For/77 = n, (3.13) reduces to 

(3.14) pn - Pn+lPn-l = P2n~6 ~ °n-3Pn-3 + O-n+3 • 
It is not evident that (3.14) is equivalent to (3.11). This is proved immediately below. 

4. We now take 

pmon = ZAami:an = VAam+n + ZAam($n +t) = pm+n + ̂ Aam~n(an^n -anjn) 

= pm+n + ^Aam-m(o_n-an), 
which gives 

' ^ • • 1 / Pm®n ~ Pm+n + Pm~n@-n ~ Pm-2n ' 
In particular, for m = n, 

(4.2) pnOn = p2n + O-n ~ P-n > 

which shows that (3.14) is indeed equivalent to (3.11). 
For/77 =2nf (4.1) gives 

P3n = P2nOn~ PnO-n + 1 = Pn^n ~ °n°-n + P-n^n - Pn°-n + 1 • 

To get a general formula for Ppn take 

£ PPn*p= £ xPZAaP"=y:^-= VAd-FxHl-rx) 
P=0 P=0 J-anx (1-anx)(1-(3nx)(1-7nx) 

= 1 ~ <°n- Pn>n+ P-nX 
2 3 

1 - onx + o,nx - x 

Then, as in the proof of (2.15), we have 
(4-3) ppn = cp>n~(on- pn)cp.1)Yl + p,ncp,2,n (P > 0), 
where 
(4.4) cp,„ = £ (-1))(i,j,k)(/nain . 

i+2j+3k=p 
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Since 

we have in particular 
Pi = 2,Aa = 0, p2 = ZAa2 = 0, 

(4-5) pp = E (-niUkhV (p > 3) 
i+2j+k=p-3 

and 

(4-6) p_p = E (-VlfaWu* (p > 0). 
i+2j+3k=p 

With the fuller notation 

Pn = Pn(w), P-n = P-n(w), 
it is clear from (4.5) and (4.6) that 

(4.7) Pn(u,v) = P3_n(v,u). 
Moreover (4.4) becomes 
(4.8) cp>n = pp(on, o_n) (p > 0). 

We may now substitute from the explicit formulas (2.9), (2.10), (4.5), (4.6) in various formulas of Sec-
tions 3 and 4 to obtain a large number of polynomial identities in two indeterminants. To give only one rel-
atively simple example, we take (4.2). Thus 

(4.9) { E (-1)j(i.i.k)uivK[ E (-Vj T^^ O'MtuV 
I i+2j+3k=n-3 J li+2j+3k=n J 

E (-D'UkhV- E (-V'ttiMJu' 
i+2j+3k=2(n-3) i+2j+3k=n 

+ E t-Vj TT(^ OlktfuJ (n>0). 
i+2j+3k=n ' J 

5. For small n, on and pn can be computed without much labor by means of the recurrences. Moreover 
the results are extended by the symmetry relations 

0_n(ll,v) = On(v,u), Pn(u,v) = P3-n(w) • 

A partial check on on is furnished by the result, that, for prime n, 

on(u,v) = un (mod n). 
Also, by (2.5), 

£ onn,vxn = 3-2*+x2 = J**-*2**3
 } 

n=0 1-X+X2-X3 1-X4 

which implies 

On(1,1) = 3, 04n+l(1,V = 04n+3(lV = 1, 04n+2(1,D = - 1 . 
As for pn(1,1), we have by (3.5) 

so that 
n=0 1-X+X -X 1-X 
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P4n(l,l) = P4n+3(1,1) = I p4n+l(1,1) = P4n+2(1,U = 0. 

Table 1 

op = 3, Oj = u, 02 = u - 2v 

03 = u - 3uv + 3 

04 = u4 -4u2v + 2v2 +4u 
05 f u5 - 5u3v + 5uv2 + 5u2 - 5v 
06 ~ u6 -6u4v + 9u2v2 + 6u3 -2v3 + 12uv + 3 
07 = u7 -7u5v+ 14u3v2 +7u4 -7uv3 -21u2v + 7v2 + 7u 
08 = u8 -8u6v + 20u4v2 +8u5 - 16u2v3 - 32u3v + 2v4 +24uv2 + 12u2 - 8v 
09 = u9 -9u7v + 27u5v2 +9u6 -30u3v3 -45u4v + 9uv4 +54u2v2 + 18u3 

- 9v2 - 27uv + 3 __^_______________ 
010 = u10 - 10u8v + 35u6v2 + Wu7-50u4v3 -60u5v + 25u2v4+100u3v2 

- 2v5 +25u4 - 40uv3 - 60u2v + 15v2 + 10u 

Table 2 

Po = 

P4 = 

P6 = 

Pi = 

P8 = 

P9 = 

PlO 

I 
u, 

u3-

u4-

u5-

u6-

-u7 

Pi = P2 = 0, P3 = 1 

PS = u2 -v 

-2uv+1 

-3u2\/ + v2+ 2u 

-4u3v + 3uv2 +3u2 -2v 

-5u4v + 6u2v2 +4u3 - v3 

-6u5v+10u3v2 + 5u4-

- 6uv 

4uv3 -

+ 1 

12u2v + 3v2 + 3u 
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