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Definition. If / > 0 and n > 1, let q?(n) be the number of partitions of/? into an even number of parts, 
where each part occurs at most/times. Let q°(n) be the number of partitions of A? into an odd numberof parts, 
where each part occurs at most/times. I f / > 0, let^f(O) = 1 and ^ ( 0 ) = 0. 

Definition. If / > 0 and n > 0, let A{(n) = qf(n) - qf(n). 

The purpose of this paper is to determine Ai(n) when / is any odd positive integer. The only cases previously 
known were /= 1, proved by Euler (see [1]), /= 3, proved by this writer (see [2]), and/= 5 and 7, proved by 
Alder and Muwafi (see [3]). 

Definition. If s, t, u are positive integers with s odd and 1 < s < t, and n is an integer, let fs> t}U (n) be the 
number of partitions of n in which each odd part occurs at most once and is ̂  ±s (mod It) and in which each 
even part is divisible by It and occurs < u times. 

Theorem. If s, t, u are positive integers with s odd and 1 < s < t, and n is an integer, then 

&2tu-i(n) = (~VnZ fs,t,u(n-tj2-(t-s)j). 
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where the last equality follows from Jacobi's identity with k = tant\z = t-s. Since s is odd, 

tj2 + (t-s)j =/ (mod 2). 

Hence, when we substitute -x forx, we obtain 
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from which the theorem follows immediately. 

Corollary 1. \is and t are positive integers with s odd and 1 < s < t, and n is an integer, then 

*2t-i(n) = (~1)n E fs,t,l(n-tf2-(t-s)/). 

j 

Note that fS)t,i(n) is the number of partitions of n into distinct odd parts ^ ± s (mod It), 

Proof. Ls\u= 1 in the theorem. 
Letting^ = 1 and t = 3 yields Theorem 1 of [3 ] . 

Corollary 2. If i> 2 and/? is an integer, then (-J)nAi(n)> 0. 

Proof. For even i, this follows from Theorem 3 of [ 2 ] ; for odd i, it follows by letting s = 1 and 
t = (i + D/2 in Corollary 1. 

Corollary 3. If s and t are positive integers with s odd and 1 <s <t, and/? is an integer, then 

A4t-lM = <-Dn £ fs,t,2(n-tj2-(t-s)j). 
j 

Note that fSyt,2(n) 's t n e number of partitions of/? into distinct parts which are either odd but ^±s (mod 2f) 
or which are divisible by It 

Proof Let £/ = 2 in the theorem. 

Corollary 4. If u is a positive integer and n is an integer, then 

±4u-lM = (-Dn L h,2,Jn-2j2-j). 
j 

Note that fi}2,u(n) is the number of partitions of/7 into parts divisible by 4, where each part occurs <u times. 
Proof. Lets= 7, f = ̂  in the theorem. 

Letting u = 1 yields Theorem 2 of [2] and u = 2, Theorem 2 of [3 ] . 
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