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from which we get that 
Wn = (L2n-2)/n 

or 

y(n) 

These properties have been generalized elsewhere for arbitrary order recurrence relations [5 ] . 
Hoggatt and Lind [3] have also developed similar results in an earlier paper. 
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the 

problem. 
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EMBEDDING A GROUP IN JHEpth POWERS 

HUGOS.SUN 
California State University, Fresno, California 

In a finite group G, the set of squares, cubes, or/? powers in general, does not necessarily constitute a subgroup. 
However, we can always embed a finite group into the set of squares, cubes, or any pth powers of another group. 

A subgroup H of a group G is said to be a subgroup of p powers if for every y e H, there is an x & G such 
that x? = y. 

Theorem. Every finite group G is isomorphic to a subgroup of pth powers of some permutation group. 

Proof. Let G be a finite group, and let/7be an isomorphic permutation group onn elements, say au,ai2, '" ' 

Consider a permutation group Q on pn elements 

aii,ai2,-,ain; a2i,a22,~',a2n; •••/ apl,ap2,-,apn, 

defined in the following manner: For any permutation 

o = (au1au2-
au^'"(aljiaij2'"aljm) 

in P corresponds the permutation 

0 = ^h^li2 '"aiik)(a2i1a2i2 '"a2iJ '"(apiiapi2 '"aVi\J 
'•'(aihalj2--aljj(a2j2^a2jj---(apjlapj2^apjm) 

in the symmetric group Spn. Q is clearly isomorphic to P and each elemenr in Q is t h e / / " power of an element in 
Spn. In fact, d = TP, where 

T = (au1a2i1 -apilali2a2i2 '"api2 -aiika2ik -apik) 
-'(aij1a2jl •~apj1aij2a2j2 -apj2 -aljma2jm -apjm). 


