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from which we get that
W, =Ly, —2)/n
or

k-1
-~ (-1
Lyy—2= 3 (_)T_Q F2a; - Faay, -
v(n)
These properties have been generalized elsewhe re for arbitrary order recurrence relations [5] .
Hoggatt and Lind [3] have also developed simiiar results in an earlier paper.
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the

problem,
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EMBEDDING A GROUP IN THE p'* POWERS

HUGO S. SUN
California State University, Fresno, California

In a finite group G, the set of squares, cubes, orpth powers in general, does not necessarily constitute a subgroup.
However, we can always embed a finite group into the set of squares, cubes, or anypt powers of another group.

A subgroup H of a group G is said to be a subgroup of pth powers if for every y € H, there isan x & G such
that xP =y,

Theorem. Every finite group G is isomorphic to a subgroup ofpth powers of some permutation group.

Proof, Let G be a finite group, and let P be an isomorphic permutation group on » elements, sayasy,a72, ™ -
aiy.
Consider a permutation group @ on pn elements

a11,d12,,81n; 421,322, ,82a; , d8p1,8p2, ", dpn,;
defined in the following manner: For any permutation
in P corresponds the permutation
G = latijay;, 2tipNag; azi, ~azi,) -~ (api; apiy = apiy)
(81748155 1), Na2jy a2, ) -~ (apj 2pjy apj, )
in the symmetric group Spn. Q is clearly isomorphic to P and each elemenr in @ is thepth power of an element in
Spn- Infact, 6 = 77, where
T = (a1i,82i1 *8pi181i582ip *dpiy 81i,32i), *dpit,)

= (a1j,2j1 -+ 8pj 31138255 3pjp 21}y 82y Apjpy )
Sekchodokkk



