SOME POLYNOMIALS RELATED TO FIBONACCI AND EULERIAN NUMBERS

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

1. INTRODUCTION

Put

$$
\begin{equation*}
\frac{1}{1-k x-x^{2}}=\sum_{n=0}^{\infty} c_{k n} x^{n} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}(y)=\sum_{k=0}^{\infty} c_{k n} y^{k} \quad(n=0,1,2, \ldots) \tag{1.2}
\end{equation*}
$$

By (1.1),

$$
\sum_{n=0}^{\infty} c_{k n} x^{n}=\sum_{j=0}^{\infty} x^{j}(k+x)^{j}=\sum_{j=0}^{\infty} \sum_{s=0}\binom{j}{s} k^{j-s} x^{j+s}=\sum_{n=0}^{\infty} x^{n} \sum_{2 s \leq n}\binom{n-s}{s} k^{n-2 s},
$$

so that

$$
\begin{equation*}
c_{k n}=\sum_{2 s \leq n}\binom{n-s}{s} k^{n-2 s} \tag{1.3}
\end{equation*}
$$

Since $c_{k n}$ is a polynomial in k of degree n, it follows that

$$
\begin{equation*}
C_{n}(y)=\frac{r_{n}(y)}{(1-y)^{n+1}} \quad(n=0,1,2, \ldots) \tag{1.4}
\end{equation*}
$$

where $r_{n}(y)$ is a polynomial in y of degree n. Moreover, since

$$
c_{k, n+1}=k c_{k, n}+c_{k, n-1}
$$

it follows from (1.2) that

$$
C_{n+1}(x)=\sum_{k=0}^{\infty}\left(k c_{k, n}+c_{k, n-1}\right) x^{k}
$$

This gives

$$
\begin{equation*}
C_{n+1}(x)=C_{n}^{\prime}(x)+C_{n-1}(x) \quad(n \geq 1) . \tag{1.5}
\end{equation*}
$$

Hence, by (1.4),

Supported in part by NSF grant GP-37924X.

$$
\begin{equation*}
r_{n+1}(x)=(n+1) x r_{n}(x)+x(1-x) r_{n}^{\prime}(x)+(1-x)^{2} r_{n-1}(x) \quad(n \geq 1) \tag{1.6}
\end{equation*}
$$

with $r_{0}(x)=r_{1}(x)=1$.
If we put

$$
\begin{equation*}
r_{n}(x)=\sum_{k=0}^{n} R_{n, k} x^{k} \tag{1.7}
\end{equation*}
$$

then, by (1.6), we get the recurrence

$$
\begin{equation*}
(n-k+2) R_{n, k-1}+k R_{n, k}+R_{n-1, k}-2 R_{n-1, k-1}+R_{n-1, k-2} \tag{1.8}
\end{equation*}
$$

By means of (1.8) the following table is easily computed.

n	0	1	2	3	4	5	6	7
0	1							
1	\cdot	1						
2	1	-1	2					
3	\cdot	3	\cdot	3				
4	1	\cdot	14	4	5			
5	\cdot	8	22	60	22	8		
6	1	6	99	244	279	78	13	
7	\cdot	21	240	1251	2016	1251	240	21

It follows from (1.6) that

$$
R_{n+1, n+1}=R_{n, n}+R_{n-1, n-1}
$$

Hence, since $R_{0,0}=R_{1,1}=1$,

$$
\begin{equation*}
R_{n, n}=F_{n+1} \quad(n=0,1,2, \ldots) \tag{1.9}
\end{equation*}
$$

Hoggatt and Bicknell [2] have conjectured that

$$
\begin{equation*}
R_{2 n+1, k}=R_{2 n+1,2 n-k+2} \quad(1 \leq k \leq 2 n+1) \tag{1.10}
\end{equation*}
$$

We shall prove that this is indeed true and that

$$
\begin{equation*}
R_{2 n, 2 n-k+1}+(-1)^{k}\binom{2 n+1}{k}=R_{2 n, k} \quad(1 \leq k \leq 2 n) \tag{1.11}
\end{equation*}
$$

The proof of (1.10) and (1.11) makes use of the relationship of $r_{n}(x)$ to the polynomial $A_{n}(x)$ defined by [1], [3, Ch. 2]

$$
\begin{equation*}
\frac{1-x}{1-x e^{(1-x) z}}=1+\sum_{n=1}^{\infty} A_{n}(x) \frac{x^{n}}{n!} \tag{1.12}
\end{equation*}
$$

The relation in question is

$$
\begin{equation*}
r(x)=\sum_{2 k \leq n}\binom{n-k}{k}(1-x)^{2 k} A_{n-2 k}(x) \tag{1.13}
\end{equation*}
$$

with $A_{0}(x)=1$. The polynomial $A_{n}(x)$ is of degree n :

$$
\begin{equation*}
A_{n}(x)=\sum_{k=1}^{n} A_{n, k} x^{k} \quad(n \geq 1) \tag{1.14}
\end{equation*}
$$

where the $A_{n, k}$ are the Eulerian numbers. Since

$$
\begin{equation*}
A_{n}(x)=x^{n+1} A_{n}\left(\frac{1}{x}\right), \tag{1.15}
\end{equation*}
$$

it is easily seen that (1.10) and (1.11) are implied by (1.13).
It seems difficult to find a simple explicit formula for $R_{n, k}$ or a simple generating function for $r_{n}(x)$. An explicit formula for $R_{n, k}$ is given in (2.11). As for a generating function, we show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{n}(x) \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} A_{n}(x) f_{n}((1-x) z)(1-x)^{-n} z^{n}, \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{n}(z)=\sum_{k=0}^{\infty} \frac{(k+n)!}{k!(2 k+n)!} z^{2 k+n} \tag{1.17}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
f_{n}(z)=P_{n}(z) \cosh z+Q_{n}(z) \sinh z, \tag{1.18}
\end{equation*}
$$

where $P_{n}(z), Q_{n}(z)$ are polynomials of degree $n, n-1$, respectively, that are given explicitly below.

While (1.16) is not a very satisfactory generating function, the explicit result (1.18) for $f_{n}(z)$ seems of some interest. It is reminiscent of the like result concerning Bessel functions of order half an integer [4, p. 52].
2. PROOF OF (1.10) AND (1.11)

By (1.2) and (1.3) we have

$$
C_{n}(x)=\sum_{k=0}^{\infty} x^{k} \sum_{2 s \leq n}\binom{n-s}{s} k^{n-2 s}=\sum_{2 s \leq n}\binom{n-s}{s} \sum_{k=0}^{\infty} k^{n-2 s} x^{k}
$$

Since [3, p. 39]

$$
\sum_{k=0}^{\infty} k^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

it follows that

$$
C_{n}(x)=\sum_{2 s \leq n}\binom{n-s}{s}(1-x)^{-n+2 s} \quad A_{n-2 s}(x)
$$

and therefore

$$
\begin{equation*}
r_{n}(x)=\sum_{2 s \leq n}\binom{n-s}{s}(1-x)^{2 s} A_{n-2 s}(x) \tag{2.1}
\end{equation*}
$$

Thus we have proved (1.13).
Note that by (1.7) and (1.14), (2.1) yields

$$
\begin{equation*}
R_{n, k}=\sum_{2 s \leq n} \sum_{j=0}^{k}(-1)\binom{2 j}{j}\binom{n-s}{s} A_{n-z s, k-j} \tag{2.2}
\end{equation*}
$$

In the next place, since

$$
A_{n}(x)=x^{n+1} A_{n}\left(\frac{1}{x}\right) \quad(n>0)
$$

(2.1) gives

$$
\begin{equation*}
x^{n+1_{p}}\left(\frac{1}{x}\right)=\sum_{2 s \leq n}\binom{n-s}{s}(1-x)^{2 s} x^{n-2 s+1} A_{n-2 s}\left(\frac{1}{x}\right) \tag{2.3}
\end{equation*}
$$

We now consider separately the cases n odd and n even.
Replacing n by $2 n+1$, (2.3) becomes

$$
x^{2 n+2} r_{2 n+1}\left(\frac{1}{x}\right)=\sum_{2 s \leq n}\binom{n-s}{s}(1-x)^{2 s} A_{n-2 s}(x),
$$

so that

$$
\begin{equation*}
r_{2 n+1}(x)=x^{2 n+2} r_{2 n+1}\left(\frac{1}{x}\right) \tag{2.4}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
r^{2 n+1} r_{2 n}\left(\frac{1}{x}\right) & =\sum_{s=0}^{n-1}\binom{2 n-s}{s}(1-x)^{2 s} x^{2 n-2 s+1} A_{2 n-2 s}\left(\frac{1}{x}\right)+x(1-x)^{2 n} \\
& =\sum_{s=0}^{n}\binom{2 n-s}{s}(1-x)^{2 s} A_{2 n-2 s}(x)-(1-x)^{2 n+1}
\end{aligned}
$$

so that

$$
\begin{equation*}
r_{2 n}(x)=r^{2 n+1} r_{2 n}\left(\frac{1}{x}\right)+(1-x)^{2 n+1} \tag{2.5}
\end{equation*}
$$

By (2.4) and (1.7) it follows at once that

$$
\begin{equation*}
R_{2 n+1, k}=R_{2 n+1,2 n-k+2} \quad(1 \leq k \leq 2 n+1) . \tag{2.6}
\end{equation*}
$$

Similarly, by (2.5),

$$
\sum_{k=0}^{2 n} R_{2 n, k} x^{k}=\sum_{k=0}^{2 n} R_{2 n, k} x^{2 n-k+1}+\sum_{k=0}^{2 n+1}(-1)\binom{2 n+1}{k} x^{k}
$$

which gives

$$
\begin{equation*}
R_{2 n, k}=R_{2 n, 2 n-k+1}+(-1)^{k}\binom{2 n+1}{k} \quad(1 \leq k \leq 2 n), \tag{2.7}
\end{equation*}
$$

as well as

$$
\begin{equation*}
R_{2 n, 0}=1 \quad(n=0,1,2, \ldots) \tag{2.8}
\end{equation*}
$$

The companion formula

$$
\begin{equation*}
R_{2 n+1,0}=0 \quad(n=0,1,2, \ldots) \tag{2.9}
\end{equation*}
$$

is implied by (2.4).
Clearly, by (1.9) and (2.6),

$$
\begin{equation*}
R_{2 n+1,1}=F_{2 n+2} \quad(n=0,1,2, \ldots) \tag{2.10}
\end{equation*}
$$

while, by (2.7),

$$
\begin{equation*}
R_{2 n, 1}=F_{2 n+1}-(2 n+1) \quad(n=0,1,2, \ldots) \tag{2.11}
\end{equation*}
$$

Since

$$
A_{n}(y)=y \sum_{j=0}^{n}(y-1)^{n-j} \Delta^{j} 0^{n}
$$

where, as usual,

$$
\Delta^{j} 0^{n}=\sum_{s=0}^{j}(-1)^{j-s}\binom{j}{s} s^{n}=j!S(n, j),
$$

where $S(n, j)$ is a Stirling number of the second kind, (2.1) implies

$$
\begin{aligned}
r_{n}(x) & =x \sum_{2 k \leq n}\binom{n-s}{s}(1-x)^{2 s} \sum_{j=0}^{n-2 s}(x-1)^{n-2 s-j} \Delta^{j} 0^{n-2 s} \\
& =x \sum_{2 s \leq n}\binom{n-s}{s} \sum_{j=0}^{n-2 s}(x-1)^{n-j} \Delta^{j} 0^{n-2 s} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
R_{n, k}=\sum_{2 s \leq n}\binom{n-s}{s} \sum_{j=0}^{n-2 s}(-1)^{n} j-k+1\binom{n-j}{k-1} \Delta^{j} 0^{n-2 s} . \tag{2.12}
\end{equation*}
$$

For example, for $k=n$, (2.12) reduces to

$$
R_{n, n}=\sum_{2 s \leq n}\binom{n-s}{s}=F_{n+1}
$$

3. GENERATING FUNCTIONS

To obtain a generating function for $r_{n}(x)$, we again make use of (2.1). Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty} r_{n}(x) \frac{z^{n}}{n!} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{2 k \leq n}\binom{n-k}{k}(1-x)^{2 k} A_{n-2 k}(x) \\
& =\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\binom{n+k}{k} \frac{z^{n+2 k}}{(n+2 k)!}(1-x)^{2 k} A_{n}(x)
\end{aligned}
$$

If we put

$$
\begin{equation*}
f_{n}(z)=\sum_{k=0}^{\infty} \frac{(k+n)!}{k!(2 k+n)!} z^{2 k+n}=\sum_{k=0}^{\infty} \frac{(k+1)_{n}}{(2 k+n)!} z^{2 k+n} \tag{3.1}
\end{equation*}
$$

we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{n}(x) \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} A_{n}(x) f_{n}((1-x) z)(1-x)^{-n} z^{n} . \tag{3.2}
\end{equation*}
$$

Clearly

$$
f_{0}(z)=\sum_{k=0}^{\infty} \frac{z^{2 k}}{(2 k)!}, 2 f_{1}(z)=\sum_{k=0}^{\infty} \frac{2 k+2}{(2 k+1)!} z^{2 k+1}=z \sum_{k=0}^{\infty} \frac{z^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{z^{2 k+1}}{(2 k+1)!}
$$

so that

$$
\begin{equation*}
f_{0}(z)=\cosh z, 2 f_{1}(z)=z \cosh z+\sinh z \tag{3.3}
\end{equation*}
$$

For $n=2$ we get

$$
4 f_{2}(z)=\sum_{k=0}^{\infty} \frac{4(k+1)(k+2)}{(2 k+2)!} z^{2 k+2}=\sum_{k=0}^{\infty} \frac{(2 k+1)(2 k+2)+3(2 k+2)}{(2 k+2)!} z^{2 k+2}
$$

which reduces to

$$
\begin{equation*}
4 f_{2}(z)=z^{2} \cosh z+3 z \sinh z \tag{3.4}
\end{equation*}
$$

With a little more computation we find that

$$
\begin{equation*}
8 f_{3}(z)=\left(z^{3}+3 z^{2}\right) \cosh z+\left(6 z^{2}-3\right) \sinh z \tag{3.5}
\end{equation*}
$$

These special results suggest that generally

$$
\begin{equation*}
2^{n} f_{n}(z)=P_{n}(z) \cosh z+Q_{n}(z) \sinh z \tag{3.6}
\end{equation*}
$$

where $P_{n}(z), Q_{n}(z)$ are polynomials in z of degree $n, n-1$, respectively. We shall show that this is indeed the case and evaluate $P_{n}(z), Q_{n}(z)$.

If we put

$$
\begin{equation*}
S_{n}(z)=P_{n}(z)+Q_{n}(z), T_{n}(z)=P_{n}(z)-Q_{n}(z), \tag{3.7}
\end{equation*}
$$

then (3.6) becomes

$$
\begin{equation*}
2^{n} f_{n}(z)=\frac{1}{2}\left(S_{n}(z) e^{z}+T_{n}(z) e^{-z}\right) \tag{3.8}
\end{equation*}
$$

By (3.1) we have

$$
\begin{equation*}
2^{n} f_{n}(z)=\sum_{k=0}^{\infty} \frac{2^{n}(k+1)_{n}}{(2 k+n)!} z^{2 k+n} \tag{3.9}
\end{equation*}
$$

This suggests that we put

$$
\begin{equation*}
2^{n}(x+1)_{n}=\sum_{j=0}^{n} a_{n j}(2 x+j+1)_{n-j}, \tag{3.10}
\end{equation*}
$$

where the $\alpha_{n j}$ are independent of x. Clearly the $a_{n j}$ are uniquely determined by (3.10). Indeed, rewriting (3.10) in the form

$$
2^{n}\left(\frac{1}{2}(x-n)+1\right)_{n}=\sum_{j=0}^{n}(n-j)!a_{n j}\binom{x}{n-j}
$$

it is evident, by finite differences, that

$$
\begin{align*}
\alpha_{n, n-j} & =\frac{2^{n}}{j!} \sum_{s=0}^{j}(-1)^{j-s}\binom{j}{s}\left(\frac{1}{2}(s-n)+1\right)_{n} \\
& =\frac{1}{j!} \sum_{s=0}^{j}(-1)^{j-s}\binom{j}{s}(s+n)(s+n-2) \cdots(s-n+2) . \tag{3.11}
\end{align*}
$$

Substituting from (3.10) in (3.9) we get

$$
\begin{align*}
2^{n} f_{n}(z)= & \sum_{k=0}^{\infty} \frac{z^{2 k+n}}{(2 k+n)!} \sum_{j=0} a_{n j}(2 k+j+1) \\
= & \sum_{j=0}^{n} a_{n j} z^{n-j} \sum_{k=0}^{\infty} \frac{z^{2 k+j}}{(2 k+j)!} \\
= & \sum_{2 j \leq n} a_{n, 2 j} z^{n \cdot 2 j}\left\{\sum_{k=0}^{\infty} \frac{z^{2 k}}{(2 k)!}-\sum_{t=0}^{j-1} \frac{z^{2 t}}{(2 t)!}\right\} \\
& +\sum_{2 j<n} a_{n, 2 j+1} z^{n-2 j-1}\left\{\sum_{k=0}^{\infty} \frac{z^{2 k+1}}{(2 k+1)!}-\sum_{t=0}^{j-1} \frac{z^{2 t+1}}{(2 k+1)!}\right\} \\
= & \sum_{2 j \leq n} a_{n, 2 j} z^{n-2 j} \cosh z+\sum_{2 j<n} a_{n, 2 j+1} z^{n-2 j-1} \sinh z \\
& -\sum_{2 j \leq n} \sum_{t<j} a_{n, 2 j} \frac{z^{n-2 j-2 t}}{(2 t)!}-\sum_{2 j<n} \sum_{t<j} a_{n, 2 j+1} \frac{z^{n-2 j+2 t}}{(2 t+1)!} . \tag{3.12}
\end{align*}
$$

Now

$$
\begin{aligned}
& \sum_{2 j \leq n} \sum_{t<j} a_{n, 2 j} \frac{z^{n-2 j+2 t}}{(2 t)!}+\sum_{2 j<n} \sum_{t<j} a_{n, 2 j+1} \frac{z^{n-2 j+2 t}}{(2+1)!} \\
& =\sum_{<2 t<n} z^{n-2 t}\left\{\sum_{2 t \leq j<n} \frac{a_{n, 2 j}}{(2 j-2 t)!}+\frac{a_{n, 2 j+1}}{(2 j-2 t+1)!}\right\} \\
& =\sum_{0<2 t<n} z^{n-2 t} \sum_{2 t \leq j \leq n} \frac{a_{n, j}}{(j-2 t)!} .
\end{aligned}
$$

By (3.11)

$$
\begin{aligned}
& \sum_{2 t \leq j \leq n} \frac{a_{n j}}{(j-2 t)!} \\
& =\sum_{2 t \leq j \leq n} \frac{1}{(j-2 t)!(n-j)!} \sum_{s=0}^{n-j}(-1)^{n-j-s}\binom{n-j}{s}(s+n)(s+n-2) \cdots(s-n+2) \\
& =\sum_{j=0}^{n-2 t} \frac{1}{j!(n-2 t-j)!} \sum_{s=0}^{j}(-1)^{j-s}\binom{j}{s}(s+n)(s+n-2) \cdots(s-n+2) \\
& =\frac{1}{(n-2 t)!} \sum_{s=0}^{n-2 t}\binom{n-2 t}{s}(s+n)(s+n-2) \cdots(s-n+2) \sum_{j=s}^{n-2 t}(-1)^{j-s}\binom{n-2 t-s}{j-s} .
\end{aligned}
$$

The inner sum vanishes unless $n=2 t+s$. Since $n>2 t$, the double sum must vanish. Therefore, (3.12) reduces to

$$
\begin{equation*}
2^{n} f_{n}(z)=\sum_{2 j \leq n} a_{n, 2 j} z^{n-2 j} \cosh z+\sum_{2 j<n} a_{n, 2 j+1} z^{n-2 j-1} \sinh z \tag{3.13}
\end{equation*}
$$

Comparing (3.13) with (3.6), it is evident that

$$
\left\{\begin{array}{l}
P_{n}(z)=\sum_{2 j \leq n} a_{n, 2 j} z^{n-2 j} \tag{3.14}\\
Q_{n}(z)=\sum_{2 j<n} a_{n, 2 j+} z^{n-2 j-1}
\end{array}\right.
$$

Hence, as asserted above, $P_{n}(z), Q_{n}(z)$ are polynomials of degree $n, n-1$, respectively. It is in fact necessary to verify that $a_{n, 0} \neq 0, a_{n, 1} \neq 0$.

By (3.7) and (3.14) we have

$$
\begin{equation*}
S_{n}(z)=\sum_{j=0}^{n} \alpha_{n, j} z^{n-j}, T_{n}(z)=\sum_{j=0}^{n}(-1) a_{n, j} z^{n-j} \tag{3.15}
\end{equation*}
$$

4. ANOTHER EXPLICIT FORMULA

While we have found $\alpha_{n j}$ explicitly in (3.11), we shall now obtain another formula that exhibits $a_{n j}$ as a polynomial in n of degree $2 j$. To begin with we have, by (3.11),

$$
\begin{aligned}
e^{z} S_{n}(z) & =\sum_{k=0}^{\infty} z^{k} \sum_{j} \frac{j}{(k-j)!} a_{n, n-j} \\
& =\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \sum_{j=0}^{k}\binom{k}{j} \sum_{s=0}^{j}(-1)^{j-s}\binom{j}{s}(s+n)(s+n-2) \cdots(s-n+2) \\
& =\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \sum_{s=0}^{k}\binom{k}{s}(s+n)(s+n-2) \cdots(s-n+2) \sum_{j=s}^{k}(-1)^{j-s}\binom{k-s}{j-s} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
U_{n}(z) \equiv e^{z} S_{n}(z)=\sum_{k=0}^{\infty} \frac{(k+n)(k+n-2) \cdots(k-n+2)}{k!} z^{k} \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{gathered}
z U_{n}^{\prime}(z)-n U_{n}(z)=\sum_{k=0}^{\infty} \frac{(k+n)(k+n-2) \cdots(k-n)}{k!} z^{k}, \\
\left(z U_{n}^{\prime}(z)-n U_{n}(z)\right)=\sum_{k=0}^{\infty} \frac{(k+n+1)(k+n-1) \cdots(k-n+1)}{k!} z^{k}=U_{n+1}(z) .
\end{gathered}
$$

Carrying out the differentiation this reduces to

$$
\begin{equation*}
S_{n+1}(z)=z S_{n}^{\prime \prime}(z)+(2 z-n+1) S_{n}^{\prime}(z)+(z-n+1) S_{n}(z) . \tag{4.2}
\end{equation*}
$$

Comparing coefficients we get

$$
\begin{equation*}
a_{n+1, j}=a_{n j}+(n-2 j+3) a_{n, j-1}-(j-2)(n-j+2) \alpha_{n, j-2} . \tag{4.3}
\end{equation*}
$$

Hence, for $j=0$, we get

$$
\begin{equation*}
a_{n, 0}=1 \tag{4.4}
\end{equation*}
$$

For $j=1$, (4.3) becomes

$$
a_{n+1,1}=a_{n 1}+(n+1) a_{n 0}
$$

which gives

$$
\begin{equation*}
a_{n 1}=\binom{n+1}{2} \tag{4.5}
\end{equation*}
$$

For $n=2$, (4.3) reduces to

$$
a_{n+1,2}=a_{n 2}+(n-1) a_{n 1}
$$

which gives

$$
\begin{equation*}
a_{n 2}=3\binom{n+1}{4} \tag{4.6}
\end{equation*}
$$

With a little more computation we get

$$
\begin{gather*}
a_{n 3}=15\binom{n+1}{6}-3\binom{n+1}{4} \tag{4.7}\\
a_{n 4}=105\binom{n+1}{8}-45\binom{n+1}{6} \tag{4.8}\\
a_{n 5}=3 \cdot 5 \cdot 7 \cdot 9\binom{n+1}{10}-630\binom{n+1}{8}+45\binom{n+1}{6} . \tag{4.9}
\end{gather*}
$$

These special results suggest that generally

$$
\begin{equation*}
a_{n, j}=\sum_{2 s<j}(-1)^{s} c_{j s}\binom{n+1}{2 j-2 s} . \tag{4.10}
\end{equation*}
$$

Indeed assuming that (4.10) holds up to j, it follows from (4.3) that $a_{n+1, j+1}-a_{n, j=1}$
$=(n-2 j+1) \sum_{2 s<j}(-1)^{s} c_{j s}\binom{n+1}{2 j-2 s}-(j-1)(n-j+1) \sum_{2 s<j-1}(-1)^{s} c_{j-1, s}\binom{n+1}{2 j-2 s-2}$
$=\sum_{2 s<j}(-1)^{s}\binom{n+1}{2 j-2 s}\left\{(n-2 j+1) c_{j s}+(j-1)(n-j+1) c_{j-1, s-1}\right\}$
$=\sum_{2 s \leq j+1}(-1)^{s} c_{j+1, s}\binom{n+1}{2 j-2 s+1}$
provided

$$
(n-2 j+2 s+1) c_{j+1, s}=(2 j-2 s+1)\left((n-2 j+1) c_{j s}+(j-1)(n-j+1) c_{j-1, s-1}\right)
$$

This gives

$$
\begin{equation*}
c_{j, s}=2^{-j} \frac{(j-1)!(2 j-2 s)!}{s!(j-s)!(j-2 s-1)!} . \tag{4.11}
\end{equation*}
$$

Thus (4.10) becomes

$$
\begin{equation*}
a_{n, j}=\sum_{2 s<j} 2^{-j} \frac{(j-1)!(2 j-2 s)!}{s!(j-s)!(j-2 s-1)!}\binom{n+1}{2 j-2 s} \tag{4.12}
\end{equation*}
$$

$a_{n, j}:$| n | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | | | | | |
| 1 | 1 | 1 | | | | |
| 2 | 1 | 3 | | | | |
| 3 | 1 | 6 | 3 | -3 | | |
| 4 | 1 | 10 | 15 | -15 | | |
| 5 | 1 | 15 | 45 | -30 | -45 | +45 |

REFERENCES

[1] L. Carlitz, "Eulerian Numbers and Polynomials," Mathematics Magazine, Vol. 33 (1959), pp. 247-260.
[2] V. E. Hoggatt, Jr., \& Marjorie Bicknell-Johnson, "Convolution Arrays for Jacobsthal and Fibonacci Polynomials," The Fibonacci quarterly (to appear).
[3] John Riordan, An Introduction to Combinatorial Analysis (New York: John Wiley \& Sons, 1958).
[4] G. N. Watson, Theory of Bessel Functions, 2d ed. (Cambridge: Cambridge Univ. Press, 1944.
