ENUMERATION OF CERTAIN WEIGHTED SEQUENCES

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

The following problem has occurred somewhat incidentally in the preceding paper [1]. A complicated solution is implicit in the results of the paper. In the present paper we give a simple direct solution.

Let $v \geq 1$ and $p \geq q \geq 0$. Let $L(v, p, q)$ denote the sum

$$
\begin{equation*}
\sum r_{1} r_{2} \ldots r_{v}, \tag{1.1}
\end{equation*}
$$

where the summation is over all $r_{1}, r_{2}, \ldots, r_{v}$ satisfying

$$
\begin{equation*}
p \geq r_{1} \geq r_{2} \geq \ldots \geq r_{v}=p-q . \tag{1.2}
\end{equation*}
$$

To get a recurrence for $L(v, p, q)$, we observe that, for $v>1$,

$$
L(v, p, q)=(p-q) \sum r_{1} r_{2} \ldots r_{v-1}
$$

where now

$$
p \geq r_{1} \geq r_{2} \geq \ldots \geq r_{v-1} \geq p-q .
$$

Hence

$$
L(v, p, q)=(p-q) \sum_{k=0}^{q} \sum r_{1} r_{2} \ldots r_{v-1}
$$

where, in the inner sum

$$
p \geq r_{1} \geq r_{2} \geq \ldots \geq r_{v-1}=p-k .
$$

It follows that

$$
\begin{equation*}
L(v, p, q)=(p-q) \sum_{k=0}^{q} L(v-1, p, k) \quad(v>1) . \tag{1.3}
\end{equation*}
$$

Replacing q by $q-1$ in (1.3), we get

$$
L(v, p, q-1)=(p-q+1) \sum_{k=0}^{q-1} L(v-1, p, k) .
$$

Combining this with (1.3) we get the recurrence
$(p-q+1) L(v, p, q)-(p-q) L(v, p, q-1)=(p-q)(p-q+1) L(v-1, p, q)$.

We shall now think of p as an indeterminate and define

$$
\begin{equation*}
M(v, p, q)=\frac{L(v, p, q)}{p-q} . \tag{1.5}
\end{equation*}
$$

Then (1.4) yields

$$
\begin{equation*}
M(v, p, q)=M(v, p, q-1)+(p-q) M(v-1, p, q) \quad(v>1), \tag{1.6}
\end{equation*}
$$

together with the initial conditions

$$
\begin{cases}M(1, p, q)=1 & (q=0,1,2, \ldots) \tag{1.7}\\ M(v, p, 0)=p^{v-1} & (v=1,2,3, \ldots)\end{cases}
$$

Clearly $M(v, p, q)$ is uniquely determined by (1.6) and (1.7). The first few values are easily computed

v	0	1	2	3
1	1	1	1	1
2	p	$2 p-1$	$3 p-3$	$4 p-6$
3	p^{2}	$3 p^{2}-3 p+1$	$6 p^{2}-12 p+7$	$10 p^{2}-30 p+25$
4	p^{3}	$4 p^{3}-6 p^{2}+4 p-1$	$10 p^{3}-30 p^{2}+35 p-15$	$20 p^{3}-90 p^{2}+150 p-90$

We shall show that generally

$$
\begin{equation*}
M(v, p, q)=\frac{1}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{v+q-1} \tag{1.8}
\end{equation*}
$$

For $v=1$, (1.8) reduces to

$$
\begin{aligned}
M(1, p, q) & =\frac{1}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{q} \\
& =\frac{1}{q!} \sum_{s=0}^{q}(-1)^{q-s}\binom{q}{s} s^{q}=1 \quad(q=0,1,2, \ldots),
\end{aligned}
$$

by well-known results from finite differences. Also by (1.8),

$$
M(v, p, 0)=p^{v-1} \quad(v=1,2,3, \ldots)
$$

Thus (1.7) is verified.
Now assume that (1.8) holds for all v, q such that

$$
\begin{equation*}
v+q<m . \tag{1.9}
\end{equation*}
$$

Then, for $v+q=m$, we have

$$
\begin{aligned}
M(v, p, q-1) & +(p-q) M(v-1, p, q) \\
& =\frac{1}{(q-1)!} \sum_{s=0}^{q-1}(-1)^{s}\binom{q-1}{s}(p-s)^{v+q-2}+\frac{p-q}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{v+q-2} \\
& =\frac{1}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(q-s)(p-s)^{v+q-2}+\frac{p-q}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{v+q-2} \\
& =\frac{1}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{v+q-2}((q-s)+(p-q)) \\
& =\frac{1}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{v+q-1} \\
& =M(v, p, q) .
\end{aligned}
$$

Hence (1.8) holds for $v+q=m$, thus completing the induction.
Finally, by (1.5) and (1.8), we have

$$
\begin{equation*}
L(v, p, q)=\frac{p-q}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(p-s)^{v+q-1}=\frac{p-q}{q!} \Delta_{p}^{q}(p-q)^{v+q-1} \tag{1.10}
\end{equation*}
$$

where Λ_{p}^{q} denotes the finite difference operator defined by

$$
\Delta_{p} f(p)=f(p+1)-f(p), \Delta_{p}^{q} f(p)=\Delta_{p} \cdot \Delta_{p}^{q-1} f(p)
$$

For $p \geq q \geq 0, v \geq 1$, (1.10) evaluates the sum (1.1).

SECTION 2

For $p=q$, (1.8) reduces to

$$
M(v, q, q)=\frac{1}{q!} \sum_{s=0}^{q}(-1)^{s}\binom{q}{s}(q-s)^{v+q-1}=\frac{1}{q!} \sum_{s=0}^{q}(-1)^{q-8}\binom{q}{s}^{v+q-1}
$$

so that

$$
\begin{equation*}
M(v, q, q)=S(v+q-1, q) \quad(v \geq 1) \tag{2.1}
\end{equation*}
$$

a Stirling number of the second kind. Generally, it follows from (1.8) that

$$
M(v, p, q)=\frac{1}{q!} \sum_{s=0}(-1)^{s}\binom{q}{s} \sum_{t=0}^{v+q-1}\binom{v+q-1}{t}(p-q)^{v+q-t-1}(q-s)^{t}
$$

which gives

$$
\begin{equation*}
M(v, p, q)=\sum_{t=q}^{v+q-1}\binom{v+q-1}{t}(p-q)^{v+q-t-1} S(t, q) \tag{2.2}
\end{equation*}
$$

It follows from (1.8) that

$$
\sum_{n=0}^{\infty} M(n-q+1, p, q) \frac{z^{n}}{n!}=\frac{1}{q!} \sum_{s=0}^{\infty}(-1)^{s}\binom{q}{s} e^{(p-s) z}=\frac{1}{q!} e^{(p-q) z}\left(e^{z}-1\right)^{q}
$$

so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{q=0}^{n} M(n-q+1, p+q, q) x^{q} \frac{z^{n}}{n!}=e^{p z} \exp \left\{x\left(e^{z}-1\right)\right\} \tag{2.3}
\end{equation*}
$$

For additional properties of the sum

$$
\sum_{k=0}^{q}(-1)^{k}\left(\frac{q}{k}\right)(p-k)^{n}
$$

see [2, Ch. 1].

SECTION 3

The results of $\S 1$ can be generalized in the following way. Let $t \geq 1$ and put

$$
\begin{equation*}
L(v, p, q)=\sum\left(r_{1} r_{2} \ldots r_{v}\right)^{t} \tag{3.1}
\end{equation*}
$$

where the summation is over all r, r, \ldots, r_{v} satisfying

$$
p \geq r_{1} \geq r_{2} \geq \cdots \geq r_{v}=p-q
$$

Then, in the first place

$$
\begin{equation*}
L_{t}(v, p, q)=(p-q)^{t} \sum_{k=0}^{q} L_{t}(v-1, p, k) \quad(v>1) . \tag{3.2}
\end{equation*}
$$

It follows from (3.2) that

$$
\begin{align*}
& (p-q+1)^{t} L_{t}(v, p, q)-(p-q)^{t} L_{t}(v, p, q-1) \\
& \quad=(p-q)^{t}(p-q+1)^{t} L_{t}(v-1, p, q) \quad(v>1) \tag{3.3}
\end{align*}
$$

Hence

$$
\begin{equation*}
M_{t}(v, p, q)=M_{t}(v, p, q-1)+(p-q) M_{t}(v-1, p, q) \quad(v>1), \tag{3.4}
\end{equation*}
$$

where

$$
M_{t}(v, p, q)=\frac{L_{t}(v, p, q)}{(p-q)^{t}}
$$

and

$$
\begin{array}{ll}
M_{t}(1, p, q)=1 & (q=0,1,2, \ldots) \\
M_{t}(v, p, 0)=p^{t(v-1)} & (v=1,2,3, \ldots) \tag{3.5}
\end{array}
$$

As in $\S 1$, we are again thinking of p as an indeterminate. By means of (3.4) and (3.5) it is easy to show that

$$
\begin{equation*}
M_{t}(v+1, p, q)=\sum_{i_{0}+i_{1}+\cdots+i_{q}=v} p^{i_{0} t}(p-1)^{i_{1} t} \ldots(p-q)^{t_{q} t} \tag{3.6}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\sum_{v=0}^{\infty} M_{t}(v+1, p, q) z^{v}=\sum_{j=0}^{q}\left(1-(p-j)^{t} z\right)^{-1} \tag{3.7}
\end{equation*}
$$

Now put

$$
\prod_{j=0}^{q}\left(1-(p-j)^{t} z\right)^{-1}=\sum_{j=0}^{q} \frac{A_{j}^{(t)}}{1-(p-j)^{t} z}
$$

where the $A_{j}^{(t)}$ are independent of z. Then

$$
\begin{equation*}
A_{j}^{(t)}=\prod_{\substack{i=0 \\ i \neq j}}^{q}\left(1-(p-i)^{t}(p-j)^{-t}\right)^{-1}=(p-j)^{q t} \prod_{\substack{i=0 \\ i \neq j}}^{q}\left((p-j)^{t}-(p-i)^{t}\right)^{-1} . \tag{3.8}
\end{equation*}
$$

Finally, we have

$$
M_{t}(v+1, p, q)=\sum_{j=0}^{q} A_{j}(p-j)^{t v}
$$

with $A_{j}^{(t)}$ given by (3.8).
For $t=1$, (3.8) reduces to

$$
A_{j}^{(1)}=(p-j)^{q} \prod_{\substack{i=0 \\ i \neq j}}^{q}(i-j)^{-1}=\frac{(-1)^{j}(p-j)^{q}}{j!(q-j)!}=\frac{(-1)^{j}}{q!}\left(\frac{q}{j}\right)(p-j)^{q} .
$$

Hence (3.9) becomes

$$
M_{1}(v+1, p, q)=\frac{1}{q!} \sum_{j=0}^{q}(-1)^{j}\binom{q}{j}(p-j)^{q+v},
$$

in agreement with (1.8).

REFERENCES
[1] L. Carlitz, "Some Remarks on a Combinatorial Identity," The Fibonacci Quarterly, Vol. 16, No. 3 (June 1978), pp. 243-248.
[2] N. Nielsen, Traite elementaire des nombres de Bernoulli (Paris: Gau-thier-Villars, 1923).

