THE NUMBER OF DERANGEMENTS OF A SEQUENCE WITH GIVEN SPECIFICATION

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

Consider sequences

$$
\begin{equation*}
\sigma=\left(\alpha_{1}, a_{2}, \ldots, \alpha_{N}\right) \tag{1.1}
\end{equation*}
$$

where $a_{j} \varepsilon Z_{k}=\{1,2, \ldots, k\}$. The sequence is said to have specification [$n_{1}, n_{2}, \ldots, n_{k}$], where the n_{j} are non-negative integers, $N=n_{1}+n_{2}+\cdots$ $+n_{k}$, if each element $j, 1 \leq j \leq k$, occurs in σ exactly n_{j} times. The sequence is called a derangement provided no element is in a position occupied by it in the sequence

$$
\begin{equation*}
(1,1, \ldots, 1,2,2, \ldots, 2, \ldots, k, k, \ldots, k) . \tag{1.2}
\end{equation*}
$$

Let $P\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ denote the number of possible derangements. Even and Gil is [1] (see also Jackson [2]) have proved the following result.

$$
\begin{equation*}
P\left(n_{1}, n_{2}, \ldots, n_{k}\right)=(-1)^{n_{1}+n_{2}+\cdots+n_{k}} \cdot \int_{0}^{\infty} e^{-x}\left\{\prod_{j=1}^{k} L_{n_{j}}(x)\right\} d x, \tag{1.3}
\end{equation*}
$$

where $L_{n}(x)$ is the Laguerre polynomial defined by

$$
\begin{equation*}
L_{n}(x)=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{x^{j}}{j!} . \tag{1.4}
\end{equation*}
$$

The object of the present note is to give a simple proof of (1.3) along the lines of the standard proof of the case $n_{1}=n_{2}=\cdots=n_{k}=1$ [3, p. 59]. We also prove some related results.

SECTION 2
Let

$$
\begin{equation*}
P(\boldsymbol{n}, \boldsymbol{m})=P\left(n_{1}, \ldots, n_{k} ; m_{1}, \ldots, m_{k}\right), \tag{2.1}
\end{equation*}
$$

where $0 \leq m_{j} \leq n_{j}$, denote the number of sequences (1.1) in which, for each j, exactly m_{j} of the values remain in their original position in (1.2). It follows at once from the definition that

$$
\begin{equation*}
P(\boldsymbol{n}, \boldsymbol{m})=P(\boldsymbol{n}-\boldsymbol{m}, \mathbf{0}) \prod_{j=1}^{k}\binom{n_{j}}{m_{j}}=P(\boldsymbol{n}-\boldsymbol{m}) \prod_{j=1}^{k}\binom{n_{j}}{m_{j}}, \tag{2.2}
\end{equation*}
$$

where $P(\boldsymbol{n})=P\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
Clearly

$$
\sum_{\boldsymbol{m}=0}^{\boldsymbol{n}} P(\boldsymbol{n}, \boldsymbol{m})=\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\frac{N!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

where

$$
\sum_{m=0}^{n} \equiv \sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} \cdots \sum_{m_{k}=0}^{n_{k}}
$$

Thus, by (2.2),

$$
\sum_{m=0}^{\boldsymbol{n}}\binom{n_{1}}{m_{1}} \cdots\binom{n_{k}}{m_{k}} P(m)=\left(n_{1}, n_{2}, \ldots, n_{k}\right)
$$

This relation is equivalent to

$$
\begin{align*}
P(\boldsymbol{n}) & =\sum_{\boldsymbol{m}=0}^{\boldsymbol{n}}(-1)^{N-M}\binom{n_{1}}{m_{1}} \cdots\binom{n_{k}}{m_{k}}\left(m_{1}, \ldots, m_{k}\right) \tag{2.3}\\
& =\sum_{m=0}^{\boldsymbol{n}}(-1)^{N-M}\binom{n_{1}}{m_{1}} \cdots\binom{n_{k}}{m_{k}} \frac{M!}{m_{1}!\ldots m_{k}!}
\end{align*}
$$

where $M=m_{1}+\cdots+m_{k}$ 。

SECTION 3

To verify that (2.3) is in agreement with (1.3), we take

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x}\left\{\prod_{j=1}^{k} L_{n_{j}}(x)\right\} d x & =\int_{0}^{\infty} e^{-x}\left\{\prod_{j=1}^{k} \sum_{m=0}^{n_{j}}(-1)^{m_{j}}\binom{n_{j}}{m_{j}} \frac{x^{m_{j}}}{m_{j}!}\right\} d x \\
& =\sum_{m=0}^{n}(-1)^{M}\binom{n_{1}}{m_{1}} \cdots\binom{n_{k}}{m_{k}} \frac{1}{m_{1}!\ldots m_{k}!} \int_{0}^{\infty} e^{-x} x^{M} d x \\
& =\sum_{m=0}^{n}(-1)^{M}\binom{n_{1}}{m_{1}} \cdots\binom{n_{k}}{m_{k}} \frac{M!}{m_{1}!\ldots m_{k}!} .
\end{aligned}
$$

This evidently proves the equivalence of (1.3) and (2.3).

SECTION 4

Put

$$
\begin{equation*}
P_{k}(N)=\sum_{n_{1}+\cdots+n_{k}=N} P(\boldsymbol{n}) . \tag{4.1}
\end{equation*}
$$

Thus $P(n)$ denotes the total number of derangements from Z_{k} of length N. Then by (2.3) we have

$$
P_{k}(n)=\sum_{n_{1}+\cdots+n_{k}=N} \sum_{m=0}^{n}(-1)^{N-M}\binom{n_{1}}{m_{1}} \cdots\binom{n_{k}}{m_{k}} \frac{M!}{m_{1}!\cdots m_{k}!}
$$

$$
=\sum_{m_{1}+\cdots+m_{k}=N}(-1)^{N-M} \frac{M!}{m_{1}!\ldots m_{k}!} \sum_{n_{1}+\cdots+n_{k}=N}\binom{n_{1}}{m_{1}} \ldots\binom{n_{k}}{m_{k}},
$$

where as above $M=m_{1}+\cdots+m_{k}$. Since the inner sum on the extreme right is equal to

$$
\binom{N+k-1}{M+k-1},
$$

we get

$$
\begin{aligned}
P_{k}(N) & =\sum_{m_{1}+\cdots+m_{k} \leq N}(-1)^{N-M} \frac{M!}{m_{1}!\ldots m_{k}!}\binom{N+k-1}{M+k-1} \\
& =\sum_{M=0}^{N}(-1)^{N-M}\binom{N+k-1}{M+k-1} \sum_{m_{1}+\cdots+m_{k}=M} \frac{M!}{m_{1}!\ldots m_{k}!} .
\end{aligned}
$$

By the multinomial theorem

$$
\sum_{m_{1}+\cdots+m_{k}=M} \frac{M!}{m_{1}!\ldots m_{k}!}=k^{M}
$$

so that

$$
\begin{equation*}
P_{k}(N)=\sum_{M=0}^{N}(-1)^{N-M}\binom{N+k-1}{M+k-1} k^{M} \tag{4.2}
\end{equation*}
$$

It follows from (4.2) that

$$
\begin{aligned}
k^{k-1} P_{k}(N) & =\sum_{m=k-1}^{N+k-1}(-1)^{N+k-m-1}\binom{N+k-1}{m} k^{m} \\
& =\sum_{m=0}^{N+k-1}(-1)^{N+k-m-1}\binom{N+k-1}{m} k^{m}-\sum_{j=0}^{k-2}(-1)^{N+k-j-1}\binom{N+k-1}{j} k^{j}
\end{aligned}
$$

and therefore
$\left.P_{k}(N)=k^{1-k}\left\{(k-1)^{N+k-1}-\sum_{j=0}^{k-2}(-1)^{N+k-j-1(N+k-1} \begin{array}{c}k-1 \\ j\end{array}\right) k^{j}\right\} \quad(k \geq 1)$.
It follows from (4.3) that, for fixed $k>2$,

$$
\begin{equation*}
P_{k}(N) \sim k^{1-k}(k-1)^{N+k-1} \quad(N \rightarrow \infty) \tag{4.4}
\end{equation*}
$$

On the other hand, if N is fixed and $k \rightarrow \infty$, it is evident from (4.2) that
so that

$$
P_{k}(N)=\sum_{M=0}^{N}(-1)^{M}\binom{N+k-1}{M} k^{N-M} \sim \sum_{M=0}^{N}(-1)^{M} \frac{k^{M}}{M!} k^{N-M},
$$

$$
\begin{equation*}
P_{k}(N) \sim k^{N} \sum_{M=0}^{N} \frac{(-1)^{M}}{M!} \quad(k \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

SECTION 5
Fairly simple generating functions are implied by (4.2). We have first

$$
\begin{aligned}
\sum_{N=0}^{\infty} x^{N} \sum_{M=0}^{N}(-1)^{N-M}\binom{N+k-1}{M+k-1} k^{M} & =\sum_{M=0}^{\infty} k^{M} x^{M} \sum_{N=0}^{\infty}(-1)^{N}\binom{N+M+k-1}{M+k-1} x^{N} \\
& =\sum_{M=0}^{\infty} k^{M} x^{M}(1+x)^{-M-k} \\
& =(1+x)^{-k}\left(1-\frac{k x}{1+x}\right)^{-1}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{N=0}^{\infty} P_{k}(N) x^{N}=(1+x)^{-k+1}(1+x-k x)^{-1} \tag{5.1}
\end{equation*}
$$

In the next place

$$
\begin{aligned}
\sum_{N=0}^{\infty} P_{k}(N) \frac{x^{N}}{(N+k-1)!} & =\sum_{N=0}^{\infty} \frac{x^{N}}{(N+k-1)!} \sum_{M=0}^{N}(-1)^{N-M}\binom{N+k-1}{M+k-1} k^{M} \\
& =\sum_{M=0}^{\infty} \frac{k^{M} x^{M}}{(M+k-1)!} \sum_{N=0}^{\infty}(-1)^{N} \frac{x^{N}}{N!} \\
& =e^{-x} \sum_{M=0}^{\infty} \frac{k^{M} x^{M}}{(M+k-1)!}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{N=0}^{\infty} P_{k}(N) \frac{x^{N}}{(N+k-1)!}=(k x)^{-k+1} e^{-x}\left\{e^{k x}-\sum_{m=0}^{k-2} \frac{k^{m} x^{m}}{m}\right\} \quad(k \geq 1) \tag{5.2}
\end{equation*}
$$

It is easily seen that (4.3) is implied by (5.2).

REFERENCES

[1] S. Even \& J. Gillis, "Derangements and Laguerre Polynomials," Math. Proc. Camb. Phil. Soc., Vol. 79 (1976), pp. 135-143.
[2] D. M. Jackson, "Laguerre Polynomials and Derangements," Math. Proc. Camb. Phil. Soc., Vo1. 80 (1976), pp. 213-214.
[3] John Riordan, An Introduction to Combinatorial Analysis (New York: John Wiley \& Sons, Inc., 1958).
