ENUMERATION OF PERMUTATIONS BY SEQUENCES

LEONARD CARLITZ
Duke University, Durham, North Carolina 27706

SECTION 1

André [2] discussed the enumeration of permutations by number of sequences; his results are reproduced in Netto [5, pp. 105-112]. Let $P(n, s)$ denote the number of permutations of $Z_{n}=\ldots 1,2, \ldots, n \ldots$ with s ascending or descending sequences. For example, the permutation 24315 has the ascending sequences 24,15 and the descending sequence 431; the permutation 6.13254 has the ascending sequences 13,25 and the descending sequences $61,32,54$. The total number of sequences is five. Generally, a permutation of Z_{n} has at most $n-1$ sequences; such a permutation is called an up-down or down-up permutation according as it begins with an ascending or a descending sequence. Clearly, in this case all the sequences are of length two.

It is convenient to put

$$
\begin{equation*}
P(0, s)=\delta_{0, s}, P(1, s)=\delta_{0, s} . \tag{1.1}
\end{equation*}
$$

André proved that $P(n, s)$ satisfies the recurrence

$$
P(n+1, s)=s P(n, s)+2 P(n, s-1)+(n-s+1) P(n, s-2) \quad(n \geq 2)
$$

With the convention $P(1, s)=\delta_{0, s},(1.2)$ holds for $n \geq 1$.

$P(n, s):$| $n s$ | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 1 | | | | | |
| 2 | | 2 | | | | |
| 3 | | 2 | 4 | | | |
| 4 | | 2 | 12 | 10 | | |
| 5 | | 2 | 28 | 58 | 32 | |
| 6 | | 2 | 60 | 236 | 300 | 122 |

Let $A(n)$ denote the number of up-down and $B(n)$ the number of down up permutations of Z_{n}. Then

Supported in part by NSF grant GP-37924X. AMS (MOS) classification (1972). 05A15.

$$
\begin{equation*}
A(n)=B(n)=\frac{1}{2} P(n, n-1) \quad(n \geq 2) \tag{1.3}
\end{equation*}
$$

Moreover, André [1] showed that

$$
\begin{equation*}
\sum_{n=0}^{\infty} A(n) \frac{z^{n}}{n!}=\sec z+\tan z \tag{1.4}
\end{equation*}
$$

with $A(0)=A(1)=1$. Thus, a generating function for $P(n, n-1)$ is known; also, (1.4) yields an explicit formula for $A(n)$ and, therefore, also for $P(n, n-1)$.

A generating function for $P(n, s)$ has apparently not been found. We shall show that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) x^{n-s}=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2} \tag{1.5}
\end{equation*}
$$

We have been unable to find an explicit formula for $P(n, s)$. However, it follows from (1.2) and (1.3) that

$$
\begin{array}{ll}
P(n, n-2)=2 A(n+1)-4 A(n) & (n \geq 2) \\
P(n, n-3)=A(n+2)-4 A(n+1)-(n-5) A(n) & \\
(n \geq 3),
\end{array}
$$

and so on. Generally, we have

$$
P(n, n-s)=\sum_{j=1}^{s} f_{s j}(n) A(n+s-j) \quad(n \geq s>0)
$$

where the $f_{s j}(n)$ are polynomials in $n, f_{s 1}(n)=1$. However, the $f_{s j}(n)$ are not evaluated.

If we let $P(n, r, s)$ denote the number of permutations of Z_{n} with r ascending and s descending sequences, it is easy to show that

$$
\left\{\begin{array}{l}
P(n, r, r)=P(n, 2 r) \\
P(n, r, r-1)=P(n, r-1, r)=\frac{1}{2} P(n, 2 r-1)
\end{array}\right.
$$

Moreover, $P(n, r, s)=0$ unless $r=s, s+1$, or $s-1$. A1so, permutations can be classified further according as they begin or end with either an ascending or descending sequence. This suggests the four enumerants

$$
P_{++}(n, r, s), P_{+-}(n, r, s), P_{-+}(n, r, s), P_{--}(n, r, s) ;
$$

for precise definitions, see $\S 5$ below.
It is also of some interest to adapt another point of view. We define $P(n, r, s)$ as the number of permutations π of Z_{n} with r ascending and s descending sequences in which we count an additional ascending sequence if π begins with a descending sequence, also an additional descending sequence if π ends with an ascending sequence. For the relation of $P(n, r, s)$ to the other enumerants and a generating function, see $\S \S 5$ and 6.

SECTION 2

Put

$$
\begin{equation*}
P_{n}(x)=\sum_{s=0}^{n-1} P(n, s) x^{s} \quad(n \geq 1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, z)=\sum_{n=0}^{\infty} P_{n+1}(x) \frac{z^{n}}{n!} \tag{2.2}
\end{equation*}
$$

By (1.2) and (2.1),

$$
\begin{aligned}
P_{n+2}(x) & =\sum_{s=0}^{n+1} P(n+2, s) x^{s} \\
& =\sum_{s=0}^{n+1}\{s P(n+1, s)+2 P(n+1, s-1)+(n-s+2) P(n+1, s-2)\} x^{s} \\
& =x P_{n+1}^{\prime}(x)+2 x P_{n+1}(x)+\sum_{s=0}(n-x) P(n+1, s) x \\
& =x P_{n+1}^{\prime}(x)=2 x P_{n+1}(x)+n x^{2} P_{n+1}(x)-x^{3} P_{n+1}^{\prime}(x)
\end{aligned}
$$

Hence

$$
\begin{equation*}
P_{n+2}(x)=\left(n x^{2}+2 x\right) P_{n+1}(x)-\left(x^{3}-x\right) P_{n+1}^{\prime}(x) \quad(n \geq 0) \tag{2.3}
\end{equation*}
$$

It now follows from (2.2) that

$$
\begin{aligned}
\frac{\partial G(x, z)}{\partial z} & =\sum_{n=0}^{\infty} P_{n+2}(x) \frac{z^{n}}{n!}=\sum_{n=0}^{\infty}\left\{\left(n x^{2}+2 x\right) P_{n+1}(x)-\left(x^{3}-x\right) P_{n+1}^{\prime}(x)\right\} \frac{z^{n}}{n!} \\
& =2 x G(x, z)+x^{2} z \frac{\partial G(x, z)}{\partial z}-\left(x^{3}-x\right) \frac{\partial G(x, z)}{\partial x}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left(x^{3}-x\right) \frac{\partial G(x, z)}{\partial x}-\left(x^{2} z-1\right) \frac{\partial G(x, z)}{\partial z}=2 x G \tag{2.4}
\end{equation*}
$$

The system

$$
\begin{equation*}
\frac{d x}{x^{3}-x}=\frac{d z}{-x^{2} z+1}=\frac{d G}{2 x G} \tag{2.5}
\end{equation*}
$$

has the integrals

$$
\begin{equation*}
z \sqrt{x^{2}-1}+\arcsin \frac{1}{x}, \frac{x+1}{x-1} G . \tag{2.6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{x+1}{x-1} G(x, z)=\phi\left(z \sqrt{x^{2}-1}+\arcsin \frac{1}{x}\right), \tag{2.7}
\end{equation*}
$$

for some $\phi(u)$.
It is convenient to replace x by x^{-1} and z by $x z$, so that (2.7) becomes

$$
\begin{equation*}
\frac{1+x}{1-x} G\left(x^{-1}, x z\right)=\phi\left(z \sqrt{1-x^{2}}+\arcsin x\right) \tag{2.8}
\end{equation*}
$$

For $z=0,(2.8)$ reduces to

$$
\frac{1+x}{1-x} G\left(x^{-1}, 0\right)=\phi(\arcsin x) .
$$

Since $G\left(x^{-1}, 0\right)=1$, it follows at once that

$$
\begin{equation*}
\phi(u)=\frac{1+\sin u}{1-\sin u} . \tag{2.9}
\end{equation*}
$$

Hence (2.8) becomes, on replacing z by $z / \sqrt{1-x^{2}}$,

$$
\frac{1+x}{1-x} G\left(x^{-1}, \frac{x z}{\sqrt{1-x^{2}}}\right)=\frac{1+\sin (z+\arcsin x)}{1-\sin (z+\arcsin x)}
$$

It can be verified that the right member is equal to

$$
\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2}
$$

Therefore, we have

$$
\begin{equation*}
H(x, z)=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
H(x, z)=G\left(x^{-1}, \frac{x z}{\sqrt{1-x^{2}}}\right)=\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) x^{n-s} \tag{2.11}
\end{equation*}
$$

SECTION 3
For $x=0$, (2.10) reduces to

$$
\begin{equation*}
\sum_{n=0}^{\infty} P(n+1, n) \frac{z^{n}}{n!}=\frac{(1+\sin z)^{2}}{\cos ^{2} z}=2 \sec ^{2} z+2 \sec z \tan z-1 \tag{3.1}
\end{equation*}
$$

By (1.4),

$$
\begin{equation*}
\sum_{n=0}^{\infty} A(n+1) \frac{z^{n}}{n!}=\sec z \tan z+\sec ^{2} z \tag{3.2}
\end{equation*}
$$

while, by (1.3),

$$
\sum_{n=0}^{\infty} P(n+1, n) \frac{z^{n}}{n!}=1+2 \sum_{n=1}^{\infty} A(n+1) \frac{z^{n}}{n!}=-1+2 \sum_{n=0}^{\infty} A(n+1) \frac{z^{n}}{n!}
$$

Hence (3.1) and (3.2) are in agreement.

We may rewrite (2.10) in the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) x^{n-s}=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin \left(z \sqrt{1-x^{2}}\right)}{x-\cos \left(z \sqrt{1-x^{2}}\right)}\right)^{2} \tag{3.3}
\end{equation*}
$$

It is clear from the definition that

$$
\begin{equation*}
\sum_{s=0}^{n} P(n+1, s)=(n+1)! \tag{3.4}
\end{equation*}
$$

Hence, for $x=1$, the left-hand side of (3.3) should reduce to

$$
\sum_{n=0}^{\infty}(n+1) z^{n}=(1-z)^{-2}
$$

As for the right-hand side of (3.3), we have

$$
\begin{aligned}
& \frac{1-x}{1+x}\left\{\frac{\left(1-x^{2}\right)^{\frac{1}{2}}+z\left(1-x^{2}\right)^{\frac{1}{2}}-\frac{1}{3!} z\left(1-x^{2}\right)^{\frac{3}{2}}+\cdots}{x-1+\frac{1}{2!} z^{2}\left(1-x^{2}\right)-\frac{1}{4!} z^{4}\left(1-x^{2}\right)^{2}+\cdots}\right\}^{2} \\
& \quad=\left\{\frac{1+z-\frac{1}{3!} z^{3}\left(1-x^{2}\right)+\cdots}{1-\frac{1}{2!} z^{2}(1+x)+\cdots}\right\}^{2}
\end{aligned}
$$

which reduces to

$$
\begin{equation*}
\left(\frac{1+z}{1-z^{2}}\right)^{2}=(1-z)^{-2} \tag{3.5}
\end{equation*}
$$

Note also that for $x=-1$, we get $(1+z)^{2}$. It therefore follows from (3.3) that

$$
\begin{equation*}
\sum_{s=0}^{n}(-1)^{n-\varepsilon} P(n+1, s)=0 \quad(n>2) \tag{3.6}
\end{equation*}
$$

This is a known result [2], [5].
Combining (3.6) with (3.4) gives

$$
\begin{equation*}
\sum_{2 s \leq n} P(n+1,2 s)=\sum_{2 s \leq n} P(n+1,2 s+1)=\frac{1}{2}(n+1)! \tag{3.7}
\end{equation*}
$$

If we take $s=n$ in (1.2) we get $P(n+1, n)=2 P(n, n-1)+P(n, n-2)$. Thus it follows from (1.3) that

$$
\begin{equation*}
P(n, n-2)=2 A(n+1)-4 A(n) \quad(n \geq 2) \tag{3.8}
\end{equation*}
$$

Taking $s=n-1$, we get

$$
P(n+1, n-1)=(n-1) P(n, n-1)+2 P(n, n-2)+2 P(n, n-3),
$$

which gives

$$
\begin{equation*}
P(n, n-3)=A(n+2)-4 A(n+1)-(n-5) A(n) \quad(n \geq 3) \tag{3.9}
\end{equation*}
$$

Next, taking $s=n-2$, we get

$$
\begin{equation*}
P(n, n-4)=A(n+3)-6 A(n+2)-(3 n-16) A(n+1)+(6 n-18) A(n) \tag{3.10}
\end{equation*}
$$

$$
(n \geq 4)
$$

Thus it appears that

$$
\begin{equation*}
P(n, n-s)=\sum_{j=1}^{s} f_{s j}(n) A(n+s-j) \quad(n \geq s>0), \tag{3.11}
\end{equation*}
$$

where the $f_{s j}(n)$ are polynomials in $n, f_{s 1}(n)=1$. Indeed, using (1.2), we find that

$$
\begin{equation*}
s f_{s+1, j}(n)=f_{s, j}(n+1)-(n-s+1) f_{s-1, j-2}(n)-2 f_{s, j-1}(n) . \tag{3.12}
\end{equation*}
$$

However, it is not evident how to evaluate the $f_{s, j}(n)$ from this recurrence. Returning to (2.10), if we replace x by $\cos x$, we get

$$
\sum_{n=0}^{\infty} \frac{(z / \sin x)^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) \cos ^{n-s} x=\frac{1-\cos x}{1+\cos x}\left(\frac{\sin x+\sin z}{\cos x-\cos z}\right)^{2}
$$

Hence

$$
\begin{equation*}
\cot \frac{1}{2} x \sum_{n=0}^{\infty} \frac{(z / \sin x)^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) \cos ^{n-s} x=\cot ^{2} \frac{1}{2}(x-z) \tag{3.13}
\end{equation*}
$$

Since the right-hand side of (3.13) is symmetric in x, z, it follows that

$$
\begin{align*}
& \frac{1}{2} x \sum_{n=0}^{\infty} \frac{(z / \sin x)^{n}}{n!} \sum_{s=0}^{n} P\left(n+1, \quad \cos ^{n-s} x\right. \tag{3.14}\\
& =\cot \frac{1}{2} z \sum_{n=0}^{\infty} \frac{(x / \sin z)^{n}}{n!} \sum_{s=0}^{n} P(n+1, x) \cos ^{n-s} z .
\end{align*}
$$

It would be interesting to know whether there is some combinatorial result equivalent to (3.14).

SECTION 5

As a refinement of $P(n, s)$ we define $P(n, r, s)$ as the number of permutations of Z_{n} with r ascending and s descending sequences. It is evident that $P(n, r, s)=0$ unless $r=s, s+1$, or $s-1$. Moreover, since a permutation can be read from left to right or right to left, we have

$$
P(n, r, r-1)=P(n, r-1, r) .
$$

It according1y follows that

$$
\left\{\begin{array}{l}
P(n, r, r)=P(n, 2 r) \tag{5.1}\\
P(n, r, r-1)=P(n, r-1, r)=\frac{1}{2} P(n, 2 r)
\end{array}\right.
$$

Now divide the permutations of Z into four nonoverlapping classes according as they begin or end with ascending or descending sequence. We denote the classes by $C_{++}, C_{+-}, C_{-+}, C_{\ldots}$. The permutations in these classes have the appearance

respectively. Denote the corresponding enumerants by

$$
P_{++}(n, r, s), \quad P_{+-}(n, r, s), \quad P_{-+}(n, r, s), \quad P_{--}(n, r, s)
$$

Then we have the following equalities:

$$
\begin{equation*}
P_{++}(n, r, s)=P_{--}(n, s, r) \tag{5.3}
\end{equation*}
$$

and

$$
P_{+-}(n, r, s)=P_{-+}(n, s, r)
$$

These relations follow on applying the transformation

$$
b_{i}=n-a_{i}+1 \quad(i=1,2, \ldots, n)
$$

to any permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of Z_{n}. Alternatively (5.3) follows on first reading a permutation of C_{++}from left to right and then from right to left.

In the next place, it is evident from (5.2) that $r=s+1$ in $C_{++}, r=s$ in C_{++}or $C_{\ldots,}, r=s-1$ in C_{\ldots}. Thus

$$
\begin{array}{ll}
P_{+-}(n, r, s)=P_{-+}(n, r, s)=0 & (r \neq s), \\
P_{++}(n, r, s)=0 & (r \neq s+1), \\
P_{--}(n, r, s)=0 & (r \neq s-1) . \tag{5.7}
\end{array}
$$

Hence

$$
\left\{\begin{array}{l}
P_{+-}(n, r, r)=P_{-+}(n, r, r)=\frac{1}{2} P(n, 2 r) \tag{5.8}\\
P_{++}(n, r, r-1)=P_{--}(n, r-1, r)=\frac{1}{2} P(n, 2 r-1)
\end{array}\right.
$$

In view of (5.8), generating functions for the four enumerants are implied by (2.10).

Another point of view is of some interest. Given a permutation (α_{1}, α_{2}, \ldots, a_{n}) of Z_{n}, we adjoin virtual elements $0,0^{\prime}:\left(0, \alpha_{1}, \alpha_{2}, \ldots, a_{n}, 0^{\prime}\right)$. If $a_{1}>\alpha_{2}$, then $0 \alpha_{1}$ is counted as an additional ascending sequence; if however $a_{1}<a_{2}$, the number of ascending sequences is unchanged. Similarly, if $a_{n-1}<a_{n}$, then $\alpha_{n} 0^{\prime}$ is counted as an additional descending sequence; if $a_{n-1}>a_{n}$, the number of descending sequences is unchanged. Also, let $P(n, r, s)$ denote the number of permutations of Z_{n} with r ascending and s descending sequences using these conventions. It follows at once that

$$
\begin{equation*}
\bar{P}(n, r, s)=0 \quad(r \neq s) \tag{5.9}
\end{equation*}
$$

Moreover we have, by (5.8)

$$
\begin{align*}
\bar{P}(n, r, r)=P_{+-}(n, r, r) & +P_{-+}(n, r-1, r-1) \tag{5.10}\\
& +P_{++}(n, r, r-1)+P_{--}(n, r-1, r) .
\end{align*}
$$

To illustrate (5.10), take $n=4, r=2$. The permutations are:

$$
C_{++}\left\{\begin{array} { l l l l }
{ 1 } & { 3 } & { 2 } & { 4 } \\
{ 1 } & { 4 } & { 2 } & { 3 } \\
{ 2 } & { 3 } & { 1 } & { 4 } \\
{ 2 } & { 4 } & { 1 } & { 3 } \\
{ 3 } & { 4 } & { 1 } & { 2 }
\end{array} \quad C _ { - - } \left\{\begin{array}{llll}
2 & 1 & 4 & 3 \\
3 & 1 & 4 & 2 \\
3 & 2 & 4 & 1 \\
4 & 1 & 3 & 2 \\
4 & 2 & 3 & 1
\end{array}\right.\right.
$$

For $n=3, r=2$, the permutations are:

$$
C_{-+}\left\{\begin{array}{lll}
2 & 1 & 3 \\
3 & 1 & 2
\end{array}\right.
$$

For $n=3, r=1$:

$$
C_{+-}\left\{\begin{array}{lll}
1 & 3 & 2 \\
2 & 3 & 1
\end{array} .\right.
$$

It follows form (5.8) and (5.10) that

$$
\begin{equation*}
\bar{P}(n, 2 r)=P_{+-}(n, r, r)+P_{-+}(n, r-1, r-1)+P(n, 2 r-1) . \tag{5.11}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\bar{P}_{n}(x)=P_{n}^{+-}(x)+x^{-2} P_{n}^{-+}(x)+x^{-1} P_{n}^{++}(x)+x^{-1} P_{n}^{--}(x) \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}(x)=P_{n}^{+-}(x)+P_{n}^{-+}(x)+P_{n}^{++}(x)+P_{n}^{--}(x), \tag{5.13}
\end{equation*}
$$

where

$$
P_{n}(x)=\sum_{r} P(n, r) x^{n-k}, \quad \bar{P}_{n}(x)=\sum_{r} \bar{P}(n, r, r) x^{n-2 r},
$$

$$
\begin{aligned}
& P_{n}^{+-}(x)=\sum_{r} P_{+-}(n, r, r) x^{n-2 r} \\
& P_{n}^{++}(x)=\sum_{r} P_{++}(n, r, r-1) x^{n-2 r-1}, \text { etc. }
\end{aligned}
$$

Note that $P_{n}(x)$ is not the same as the $P_{n}(x)$ of (2.1).
Comparison of (5.13) with (5.12) gives

$$
\begin{equation*}
\bar{P}_{n}(x)-x^{-1} P_{n}(x)=\left(1-x^{-1}\right)^{2} P_{n}^{+-}(x) \tag{5.14}
\end{equation*}
$$

SECTION 6

A generating function for $P(n, r, r)$ can be obtained rapidly by using a known result on the enumeration of permutations by maxima. Given the permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of Z_{n}, then $a_{k}, 1<k<n$, is a maximum if $a_{k-1}<a_{k}$, $a_{k}>a_{k-1}$. In addition, α_{1} is a maximum if $\alpha_{1}>a_{2} ; a_{n}$ is a maximum if $a_{n-1}<a_{n}$. Let $M(n, m)$ denote the number of permutations of Z with m maxima.

Clearly if a permutation has maxima in accordance with this definition, then it has exactly m ascending and m descending sequences and conversely. Thus

$$
\begin{equation*}
\bar{P}(n, r, r)=M(n, r) \tag{6.1}
\end{equation*}
$$

A generating function for $M(n, k)$ is furnished by [3], [4]:

$$
\begin{align*}
\sum_{n, k=0}^{\infty} & M(n+2 k+1, k+1) \frac{u^{n} v^{2 k}}{(n+2 k)!} \tag{6.2}\\
& =\left\{\cosh \sqrt{u^{2}-v^{2}}-\frac{u}{\sqrt{u^{2}-v^{2}}} \sinh \sqrt{u^{2}-v^{2}}\right\}^{-2}
\end{align*}
$$

Making some changes in notation, this becomes

$$
\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{2 j \leq n} M(n+1, j+1) x \quad=\frac{1-x^{2}}{\left(\sqrt{1-x^{2}} \cos z-x \sin z\right)^{2}}
$$

Finally, in view of (6.1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{2 j \leq n} P(n+1, j+1, j+1) x \quad=\frac{1-x^{2}}{\left(\sqrt{1-x^{2}} \cos z-x \sin z\right)^{2}} \tag{6.4}
\end{equation*}
$$

If we put

$$
\begin{aligned}
H(x, z) & =\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} P_{n+1}(x), \quad H(x, z)=\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \bar{P}_{n+1}(x), \\
H^{+-}(x, z) & =\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} P_{n+1}^{+-}(x),
\end{aligned}
$$

it follows from (5.14) that

$$
\begin{equation*}
x \bar{H}(x, z)-x^{-1} H(x, z)=\left(1-x^{-1}\right)^{2} H^{+-}(x, z) . \tag{6.5}
\end{equation*}
$$

Therefore, by (2.10) and (5.14), we get

$$
\begin{equation*}
x^{-1}\left(1-x^{2}\right) H^{+-}(x, z)=\frac{x^{2}(1+x)^{2}}{\left(\sqrt{1-x^{2}} \cos z-x \sin z\right)^{2}}-\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2} \tag{6.6}
\end{equation*}
$$

Values of $P(n, r, s)$ for $n=2,3,4$ follow.

$n=4:$| r | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | \cdot | 1 | \cdot |
| 1 | 1 | 12 | 5 |
| 2 | \cdot | 5 | \cdot |

REFERENCES

[1] D. André, "Sur les permutations alternées," Journal de Mathématiques Pures et Appliquées (3), Vol. 7, pp. 167-184.
[2] D. André, "Étude sur les maxima, minima et séquences des permutations," Annales Scientifiques de Z'École Normale Superieure (3), Vol. 1 (1994), pp. 121-134.
[3] L. Carlitz \& Richard Scoville, "Generalized Eulerian Numbers: Combinatorial Applications," Journal für die reine und angewandte Mathematik, Vol. 265 (1974), pp. 110-137.
[4] R.C. Entringer, "Enumeration of Permutations of (1, ...,) by Number of Maxima," Duke Mathematical Journal, Vol. 36 (1969), pp. 575-589.
[5] E. Netto, Lehrbuch der Combinatorik (Leipzig: Teubner, 1927).

