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SECTION 1 

Andre [2] discussed the enumeration of permutations by number of sequences; 
his results are reproduced in Netto [5, pp. 105-112], Let P(n, s) denote the 
number of permutations of Zn= ... 1,2, . . . , n . . . with s ascending or descending 
sequences. For example, the permutation 24315 has the ascending sequences 
24, 15 and the descending sequence 431; the permutation 613254 has the ascend-
ing sequences 13, 25 and the descending sequences 61, 32, 54. The total num-
ber of sequences is five. Generally, a permutat ion of Zn has at most n — 1 
sequences; such a permutation is called an up-down or down-up permutation 
according as it begins with an ascending or a descending sequence. Clearly, 
in this case all the sequences are of length two. 

It is convenient to put 

P(05 s) = 60>8, P(l, s) = 60>8 . (1.1) 

Andre proved that P(n, s) satisfies the recurrence 

P(n + 1, s) = sP(n, s) + 2P(n, s - 1) + (n-s + l)P(n, s - 2) (n >_ 2). (1.2) 

With the convention P(l, s) = 60s8 , (1.2) holds for n _> 1. 
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Let A(n) denote the number of up-down and B(n) the number of down up per-
mutations of Zn. Then 

Supported in part by NSF grant GP-37924X. AMS(MOS) classification (1972). 
05A15. 

259 



260 ENUMERATION OF PERMUTATIONS BY SEQUENCES [JUNE 

A(n) = B(n) = yP(ft, n - 1) (ft 2 .2) . (1.3) 

Moreover, Andre [1] showed that 

00 „ 

E z A(n)— = sec z + tan s, (1.4) 
n = 0 

with A(Q) = ̂ 4(1) = 1. Thus, a generating function for P(ft, n - 1) is known; 
also, (1.4) yields an explicit formula for A(n) and, therefore, also for 
P(ft, ft- 1). 

A generating function for P(ft, s) has apparently not been found. We shall 
show that 

y(1 _ x2}-»/2 ̂ y p ( M + 1 a ) a . „ - . = l ^ ( j 4 j ^ 2 + BlnaVj 
^ v n\£~a ' 1 + a: V # - cos s / v 

We have been unable to find an explicit formula for P(ft, s). However, it 
follows from (1.2) and (1.3) that 

P(ft, n - 2) = 2A(n + 1) - 44 (n) (ft ̂  2), 

P(ft, n - 3) = 4(n + 2) - 44(ft + 1) - (n - 5)4(n) ( n > 3 ) , 

and so on. Generally, we have 

8 

Pin, n-s) = £)/ 8 J - (n)4(n + s-j) (n >. s > 0), 

where the f8J (ft) are polynomials in ft, /8l (ft) = 1. However, the / • (ft) are 
not evaluated. 

If we let P(ft, P, s) denote the number of permutations of Zn with P as-
cending and s descending sequences, it is easy to show that 

P(ft, p, P) = P(ft, 2P) 

P(ft, p, P - 1) = P(ft, P - 1, p) = yP(ft, 2P - 1). 

Moreover, P(ft, P, s) = 0 unless P = s, s + 1, or s - 1. Also, permutations 
can be classified further according as they begin or end with either an 
ascending or descending sequence. This suggests the four enumerants 

P++(ft, P, s), P+_(ft, P, s), P_+(ft, r, s), P__(ft, P, s); 

for precise definitions, see §5 below. 
It is also of some Interest to adapt another point of view. We define 

P(ft, P, s) as the number of permutations TT of Zn with p ascending and s de-
scending sequences in which we count an additional ascending sequence if TT 
begins with a descending sequence, also an additional descending sequence if 
TT ends with an ascending sequence. For the relation of P(ft, P, s) to the 
other enumerants and a generating function, see §§5 and 6. 
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SECTION 2 
Put 

n - l 

s = 0 
and 

rc-0 
By (1 .2 ) and ( 2 . 1 ) , 

n + l 

pnix) ^^2^(ri3 s)x8 {n >_ 1) (2 .1 ) 
8 = 0 

oo 

^+2^) = ^Cp(n+2> s)^s 
8 = 0 

n + l 

= ] P {sP(n + l , s) + 2P(n + l 5 s - 1 ) + (n - s + 2)P(n + 1 , s - 2 )} ; 
8 = 0 

= ffPn'+1fcc) + 2xPn + 1(x) + ] P (w-a : )P(n + l , s ) # 
8 = 0 

= *Pn'+i(a?) = 2;rPn + 1 ( x ) + ra2Pn + 1 0 r ) - x3Pn' + 1 ( x ) . 

Hence 

Pn + 2 ( ^ ) = (nx2 + 2x)Pn + 1(x) - (xs - *)Pw'.f lG£) (w >_ 0 ) . (2 .3 ) 

It now follows from (2.2) that 

n = 0 n = 0 

= 2^(*, 3) + ^ ^ Z) - (x3 - x ) 3 g ( ^ Z) . 

Thus 

( a 3 _ X)W&_*L _ {X2S _ ^ a g f a , z) . 2 a r C > ( 2 # 4 ) 

The system 

*3 - x -x2z + 1 2 ^ 
(2.5) 

has the integrals 

z 

It follows that 

v42 - 1 + arcsin -, X + \ G. (2.6) 
X* X - 1 v / 
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^Z\G&, a) = ^ x 2 - 1 + arcsin ± ) , (2.7) 

for some (J)(u). 
It is convenient to replace x by x~l and 2 by xz9 so that (2.7) becomes 

J-Tl^te"1* x s ) = *(s/l - ̂ 2 + arcsin x). (2.8) 

For s = 0, (2.8) reduces to 

-r——G(x~l, 0) = (j)(arcsin x) . 

Since £Gc_1, 0) = 1, it follows at once that 

,/ v 1 + sin w ,0 nN 
4>(u) = : . (2.9) 
Y 1 - sm u Hence (2.8) becomes, on replacing z by z/vl - x2, 

1 + x I a-\ xz \ = 1 + sin(g + arcsin x) 
1 - x \ ' /j ~ £"/ 1 - sin(s + arcsin x) 

It can be verified that the right member is equal to 

A - x2 
+ sin z* 

i 2 

X - COS Z 

Therefore, we have 

x Ivl - x* + sin z H(x9 z) = ̂ —- , 
1 + x \ x - cos z 

where 

(2.10) 

#(x, g) = GIX'\ -_gf_ j = J u - x2rn/2 f rX p ( n + 1 ' s^n*8- ( 2 - n ) 

\ VI ~ X2 / n = 0 n * 8 = 0 

SECTION 3 

For x = 0 , (2 .10) r educes t o 

ZTW , -i \ ^ n (1 + s i n z) 0 2 , o ,_ -, /o i \ 

P(n + 1 , n ) — = — = 2 sec z + 2 sec s t a n s - 1 . (3 .1 ) 
«-o " c o s 2 z 

By ( 1 . 4 ) , 
00 

L z A(n + 1 ) — = sec s t an s + sec z ( 3 .2 ) 
n = 0 

while, by (1 .3 ) , 

£ > ( n + 1, n ) J ^ = l + 2 j / ( n + l)gj- = - l + 2 ^ / ( n + 1 ) ^ . 
n = 0 " n = l n = 0 

Hence (3 .1 ) and (3 .2 ) a r e i n agreement . 
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We may rewrite (2.10) in the form 

n = 0 8 = 0 \ X - C0S(S / ! - X ) / 

n n n n n 

It is clear from the definition that 

Y^P{n + 1 , s) = (n+l)! (3.4) 
8-0 

Hence, for x - 1, the left-hand side of (3.3) should reduce to 

^ ( n + l)sn = (1 - s)~2. 
n = 0 

As for the right-hand side of (3.3), we have 

(1 - X2)* + 3(1 - X2)2 - Jj-3 (1 - x2)* + 

1 + * * x - 1 + yj-s2(l - *2) - ̂ " ( l - * 2 ) 2 + 

1 + z - 3y23(l - x1) + 

i - yr^d + *} + "" 

which reduces to 

l + 2\ ^ _.N-2 
1 - ^ 

2 = (1 - z)'\ (3.5) 

Note also that for x = -1, we get (1 + z)2 . It therefore follows from 
(3.3) that 

n 
]P(-l)n"8P(n + 1, s) = 0 (n > 2). (3.6) 
8 = 0 

This is a known result [2], [5]. 
Combining (3.6) with (3.4) gives 

2_.P(n + 1, 2s) = y^]p(n + 1, 2s + 1) = y(n + 1)! (3.7) 
2s £n 2a<_n 

If we take s = n in (1.2) we get P(n + 1, n) = 2P(n, n - 1) + P(n, n - 2) . 
Thus it follows from (1.3) that 

P(n, n - 2) = 2A(n + 1) - 44(n) (n >. 2). (3.8) 

Taking s = n - 1, we get 
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P(n + 1, n - 1) = (n ~ l)P(n, n - 1) + 2P(n, n - 2) 4- 2P(n, n - 3), 

which gives 

P(n, n - 3) = 4(n + 2) - U(n + 1) - (n - 5)4(n) (n >_ 3). (3.9) 

Next, taking s = n - 2, we get 

P(rc, n - 4) = 4(n + 3) - 64 (n + 2) - (3n - 16)^(n + 1) + (6n - 18)^(n) (3.10) 

( n > 4 ) . 

Thus it appears that 
8 

P(n, n - s) - 5^/^. (n)A(n + s - j) ( « > s > 0 ) , (3.11) 

where the /SJ- (n) are polynomials in n, /gl (n) = 1. Indeed, using (1.2), we 
find that 

*/a + ij <*> = /efj <* + D - <" - * + D / a . w . 2 (n) - 2 / , ^ (n). (3.12) 

However, it is not evident how to evaluate the f8j (n) from this recurrence. 
Returning to (2.10), if we replace x by cos x, we get 

E ( s / s i n x)n V ^ -n/ . -. \ n-e 1 ~ cos # / s i n a? + s i n z\2 

•±—L r — > P(n + 1, S)C0S" X = ; I . n\ £—J 1 + cos x \ c o s x - cos z) 
n- o s = o ' 

Hence 

c o t fx]C K! ]CP(n + ls s)cosn-s x = cot2 y(x - s). (3.13) 

Since the right-hand side of (3.13) is symmetric in x, z, it follows that 

1 ^ V ^ (3/sin XT V r>/ . i \ n-8 /o i / \ 

2"x2-^ ^j 2-f (n ' ) c ° S (3-l4) 
n-0 ' s=0 

oo n 
_• 1 \~^(#/sin z)n \r^ _,, , - N n_s 

= cot 7 s / , j — I , F(n + 1> x)cosn s z. 

It would be interesting to know whether there is some combinatorial result 
equivalent to (3.14). 

SECTION 5 

As a refinement of P(n, s) we define P(n, r, s) as the number of permuta-
tions of Zn with V ascending and s descending sequences. It is evident that 
P(n, r9 s) = 0 unless r = s9 s + 1 , o r s - 1 . Moreover, since a permutation 
can be read from left to right or right to left, we have 

P(n, r9 r - 1) = P(n, r - 1, r). 
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I t accordingly follows that 

P(n9 r9 p) = P(n9 2v) 
, (5.1) 

P(n9 P , r - 1) = P(n5 P - 1, p) = yP(n? 2p) 

Now divide the permutations of Z into four nonoverlapping classes accord-
ing as they begin or end with ascending or descending sequence. We denote 
the classes by C++9 C+_9 C_ + 9 C__. The permutations in these classes have 
the appearance 

SSV> « A / W V W ' W * v (5-2) 

respectively. Denote the corresponding enumerants by 

P++(n, r9 s)9 P+_(n5 r, s), P_+(n5 P, s), P__(n5 P ? s). 

Then we have the following equalities: 

P++(n9 r, s) = P__(n9 s3 P) (5.3) 

and 

P+_(n9 r9 s) = P_+(n9 s9 r). 

These relations follow on applying the transformation 

hi - n - ai + 1 (i = 1, 2, ..., ri) 

to any permutation (a19 a2, *.., an) of Zn. Alternatively (5.3) follows on 
first reading a permutation of C++ from left to right and then from right to 
left. 

In the next place, it is evident from (5.2) that r = s + 1 in C++9 r = s 
in C++ or C__, P = s - 1 in C__. Thus 

P+_(n9 r9 s) = P_+(ns P? s) = 0 

P++(n, p5 s) = 0 

P__(n, v9 s) = 0 

(r * a) , 

(r ^ s + 1), 

(r + s - 1). 

(5.5) 

(5.6) 

(5.7) 

Hence 
1 

P+_(n, P , p) = P_+(n? P ? P) = yP(n3 2p) 

.P++(n9 p, p - 1) = P__(n9 v - 1, p) = jP(n, 2p - 1). 
(5.8) 

In view of (5.8), generating functions for the four enumerants are implied 
by (2.10). 
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Another point of view is of some interest. Given a permutation (al5 a2, 
..., an) of 2n, we adjoin virtual elements 0, 0' : (0, al9 al9 ..., an9 0r). 
If al > al9 then 0a1 is counted as an additional ascending sequence; if how-
ever ax < a2, the number of ascending sequences is unchanged. Similarly, if 
an-l< ari9 then an0f is counted as an additional descending sequence; if 
an-l> an> t n e number of descending sequences is unchanged. Also, let 
P(n9 P, s) denote the number of permutations of Zn with P ascending and s 
descending sequences using these conventions. It follows at once that 

P(n9 P, s) = 0 (p ± s). (5.9) 

Moreover we have, by (5.8) 

P(n, P, P) = P+-(n9 P, p) + P_+(n, P - 1, p - 1) (5.10) 

+ P++(n9 r9 r - 1) + P_„(n9 P - 1, P) . 

To illustrate (5.10), take n = 4, v = 2. The permutations are: 

1 3 2 4 
1 4 2 3 
2 3 1 4 CL. 
2 4 1 3 
3 4 1 2 

For n = 3, P = 2, the permutations are: 

<M2, \ 
For n = 3, P 

1 3 2 '•-{: C+- > 2 3 ]_ 

It follows form (5.8) and (5.10) that 

P(n9 2P) = P+_(n, P, P ) + P_+(n, P - 1, p - 1) + P(n, 2 P - 1). (5.11) 

We have also 

Pn(x) = P+'ix) + x~zP~+(x) + x~1P++(x) + x"xP~"(x) (5.12) 

and 

Pn(x) = P+-(a?) + P~+(x) + P++(*) + P;~(x), (5.13) 

where 

Pn<*> = S P ( n > ^ " ' ^ PnW = ]CP<n> »̂ P)^n~2r, 



1978] ENUMERATION OF PERMUTATIONS BY SEQUENCES 267 

V 

Pn+M = X X + ( W > r> * - Dxn-2r-\ etc. 
V 

Note that Pn(x) is not the same as the Pn(x) of (2.1). 
Comparison of (5.13) with (5.12) gives 

Pn(x) - x-1Pn(x) = (1 - x-l)2P + '(x). (5.14) 

SECTION 6 

A generating function for P(n, r9 r) can be obtained rapidly by using a 
known result on the enumeration of permutations by maxima. Given the permu-
tation (a19 a2, • ••> an) of Zn, then ak9 1 < k < n9 is a maximum if ak_1<ak, 
ak> ak-im -*-n addition, ax is a maximum if a^ > a2 ; an is a maximum if an_T_<a„. 
Let M(n9 m) denote the number of permutations of Z with m maxima. 

Clearly if a permutation has m maxima in accordance with this definition, 
then it has exactly m ascending and m descending sequences and conversely. 
Thus 

P(n, r, r) = M(n, r). (6.1) 

A generating function for M(n, k) is furnished by [3], [4]: 
oo 

£ * < « + 2* + 1, * + 1) {f+
VZ) ! (6'2) 

cosh vu2 - V2 - sinh /w2 - V2 

Making some changes in notation, this becomes 

2 

X>-*2>~n/2 £ > > w + 1 ' J'+1)a; =
 r y r ^ 1 " r ^ 7 - (6-3) 

n = 0 2j<n (vl - X COS S - X Sin 3) 
Finally, in view of (6.1), we have 

Yja-x2yn/2 ^ V p ( n + l , j + l , j + l ) * = * — . (6.4) 
n = o * 2j£n ( / l - # 2 cos z - x s i n s ) 2 

I f we put 

Six, z) = £ (l-x2r"/2 ^P n + 1W, *(*, a) = £ (l-x2)-"/2 ^P n + 1 ( * ) , 
n= 0 

•(x, z) =Y^a-x2yn/2 —P:;^), 
n = 0 
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it follows from (5.14) that 

xH(x9 z) - x~1H(x9 z) = (1 - x~1)2H+~(x9 z). 

Therefore, by (2.10) and (5.14), we get 

f/T-x~1(l-x2)H+~(x9 z) = x2(l+x)2 

\vl-x2 cos z - x sin z) 

Values of P(n, r9 s) for n = 2, 3, 4 follow. 

L -x2 + sin z\ 
x - cos z J 

(6.5) 

(6.6) 
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