INTERPOLATION OF FOURIER TRANSFORMS ON SUMS OF FIBONACCI NUMBERS

ROBERT E. DRESSLER and LOUIS PIGNO
Kansas State University, Manhattan, Kansas 66506

Our notation throughout this paper is that of [3]. Denote by $M(\mathbf{T})$ the Banach algebra of finite Borel measures on the circle group T and write $M_{a}(\mathrm{~T})$ for those $\mu \varepsilon M(T)$ such that μ is absolutely continuous with respect to Lebesgue measure. A1so $\mu \varepsilon M_{d}(T)$ if $\mu \varepsilon M(T)$ and μ is concentrated on a countable subset of T .

The Fourier-Stieltjes transform $\hat{\mu}$ of the measure $\mu \varepsilon M(T)$ is defined by

$$
\hat{\mu}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n \theta} d \mu(\theta) \quad(n \varepsilon \mathbb{Z})
$$

where \mathbb{Z} is the additive group of integers. In this paper we prove that there is an infinite subset A of the set of Fibonacci numbers \mathcal{F} such that

$$
\left.\left.M_{a}(\mathbf{T})^{\wedge}\right|_{\wedge+1} \subset M_{d}(\mathbf{T})^{\wedge}\right|_{\uparrow+\wedge} ;
$$

i.e., on $A+A=\{a+b: a, b \varepsilon A\}$ any transform of an absolutely continuous measure can be interpolated by the transform of a discrete measure. To prove this, we shall need the following interesting result of S. Burr [1]:

A natural number m is said to be defective if the Fibonacci sequence $\mathcal{F}=\left\{f_{n}\right\}_{1}^{\infty}$ does not contain a complete system of residues modulo m.
Theorem 1: (Burr) A number m is not defective if and only if m has one of the following forms:

$$
\begin{aligned}
& 5^{k}, 2 \cdot 5^{k}, 4 \cdot 5^{k} \\
& 3^{j} \cdot 5^{k}, 6 \cdot 5^{k}, \\
& 7 \cdot 5^{k}, 14 \cdot 5^{k}, \text { where } k \geq 0, j \equiv 1
\end{aligned}
$$

Let S^{α} denote the set of all integer accumulation points of $S \subset \mathbb{Z}$ where the closure of S is taken with respect to the Bohr compactification $\overline{\mathbb{Z}}$ (see [3]) of \mathbb{Z}. In the sequel, we shall also need a theorem of Pigno and Saeki [6], which we now cite.

Theorem 2: The inclusion

$$
\left.\left.M_{\alpha}(\mathbf{T})^{\wedge}\right|_{s} \subset M_{d}(\mathbf{T})^{\wedge}\right|_{s}
$$

obtains if and only if there is a measure $\mu \varepsilon M(T)$ such that $\hat{\mu}(S)=1$ and $\hat{\mu}\left(S^{a}\right)=0$.

We state and prove our main result:
Theorem 3: There is an increasing sequence $A=\left\{f_{n}^{\prime}\right\}_{1}^{\infty}$ of Fibonacci numbers such that

$$
\left.\left.M_{a}(\mathbf{T})\right|_{\mathcal{1}+\mathfrak{A}} \subset M_{d}(\mathbf{T})\right|_{1+\mathfrak{1}}
$$

Proof: By Theorem 1, we may find an increasing sequence $A=\left\{f_{n}^{\prime}\right\}_{1}^{\infty}$ of Fibonacci numbers such that

$$
\begin{equation*}
f_{n}^{\prime} \equiv 5^{n}\left(\bmod 2 \cdot 5^{n}\right) \text { for all } n \tag{1}
\end{equation*}
$$

Now it follows from (1) that in the group of 5-adics (see [3, p. 107]) the only limit points of $A+A$ are 0 and each f_{n}^{\prime}. Hence, to find the integer limit points of $A+A$ in \bar{Z} we need only look at 0 and each f_{n}^{\prime}. Fix an f_{n}^{\prime} and consider the arithmetic progression $\left\{2 k+f_{n}^{\prime}: k \varepsilon \mathbb{Z}\right\}$. This arithmetic progression is a neighborhood of f_{n}^{\prime} in \mathbb{Z} with the relative Bohr topology, and furthermore, $2 k+f_{n}^{\prime}=f_{s}^{\prime}+f_{t}^{\prime}$ is impossible because each member of A is odd [by (1)]. Thus, the only possible integer limit point of $A+A$ is 0 .

Clearly the Dirac measure minus the Lebesgue measure separates $A+A$ and $\{0\}$ in the desired fashion. Hence we are done by Theorem 2.

Comments:

(i) Examples of related interpolation problems can be found in [2], [4], and [5].
(ii) It is an open question as to whether the sum set $\mathcal{F}+\mathcal{F}$ has the interpolation property of this paper. It is a result of the authors that if $A=\left\{a^{n}: n \in \mathbb{Z}^{+}\right\}, a$ any fixed positive integer, then $A+A$ has the interpolation property.

We wish to thank Professor V. E. Hoggatt, Jr., for the reference to [1].

REFERENCES

[1] S. A. Burr, "On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues, The Fibonacci Quarterly, Vol. 9 (1971), pp. 497-504.
[2] S. Hartman \& C. Ryll-Nardzewski, "Almost Periodic Extension of Functions, II, CoZZoq. Math., Vol. 15 (1966), pp. 79-86.
[3] E. Hewitt \& K. Ross, Abstract Harmonic Analysis, Vo1. 1 (Heidelberg and New York: Springer Verlag, 1963).
[4] J. P. Kahane, "Ensembles de Ryll-Nardzewski et ensembles de Helson," Colloq. Math., Vol. 15 (1966), pp. 87-92.
[5] J. F. Melà, "Approximation Diophantienne et ensembles lacunaires," BuZl. Soc. Math. France, Memoire 19 (1969), pp. 26-54.
[6] L. Pigno \& S. Saeki, "Interpolation by Transforms of Discrete Measures," Proc. Amer. Math. Soc., Vol. 52 (1975), pp. 156-158.

