WALTER GERDES
Universität Karlsruhe, Federal Republic of Germany

1. INTRODUCTION

In this note we consider sequences $\left\{a_{n}\right\}$ generated by the third-order recurrence relation

$$
\begin{equation*}
a_{n+3}=\alpha a_{n+2}+\beta \alpha_{n+1}+\gamma \alpha_{n}, n=1,2,3, \ldots, \tag{1}
\end{equation*}
$$

with real parameters α, β, γ and arbitrary real numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Sequences like these have been considered by [3], [4], [5] with the TRIBONACCI sequence for $\alpha=\beta=\gamma=1$ and $a_{1}=a_{2}=1, a_{3}=2$ as a special case [1].

In this paper we give in the second section a general real representation for a_{n} using the roots of the auxiliary equation

$$
\begin{equation*}
P_{3}(x):=x^{3}-\alpha x^{2}-\beta x-\gamma \tag{2}
\end{equation*}
$$

in all possible cases. In the third section we characterize convergent sequences, give their limits and, finally, in the fourth section we consider various series with a_{n} as terms and give their limits by the use of a generating function.

2. REAL REPRESENTATION FOR $\left\{a_{n}\right\}$

According to the general theory of recurrence relations $\left\{a_{n}\right\}$ can be represented by

$$
\begin{equation*}
a_{n}=A q_{1}^{n-1}+B q_{2}^{n-1}+C q_{3}^{n-1}, n=1,2,3, \ldots \tag{3}
\end{equation*}
$$

where q_{1}, q_{2}, q_{3} are the roots of the auxiliary equation $P_{3}(x)=0$. The constants A, B, C are given by the linear equations system from (3) for $n=1,2$, 3 with prescribed "start" numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$. The determinant of this system is the VANDERMONDE determinant

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
q_{1} & q_{2} & q_{3} \\
q_{1}^{2} & q_{2}^{2} & q_{3}^{2}
\end{array}\right|=\prod_{\substack{i, k=1 \\
i>k}}\left(q_{i}-q_{k}\right)=\left(q_{2}-q_{1}\right)\left(q_{3}-q_{1}\right)\left(q_{3}-q_{2}\right)
$$

which does not vanish for distinct q_{1}, q_{2}, q_{3}. In this case we get

$$
\begin{aligned}
& A=\frac{q_{2} q_{3} a_{1}-\left(q_{2}+q_{3}\right) a_{2}+a_{3}}{\left(q_{3}-q_{1}\right)\left(q_{2}-q_{1}\right)} \quad B=\frac{-q_{1} q_{3} a_{1}+\left(q_{1}+q_{3}\right) a_{2}-a_{3}}{\left(q_{3}-q_{2}\right)\left(q_{2}-q_{1}\right)} \\
& C=\frac{q_{1} q_{2} a_{1}-\left(q_{1}+q_{2}\right) a_{2}+a_{3}}{\left(q_{3}-q_{2}\right)\left(q_{3}-q_{1}\right)}
\end{aligned}
$$

So we have by (3) a real representation for a_{n}, if the roots of $P_{3}(x)$ are distinct and real. If two roots are equal, e.g., $q_{2}=q_{3}$, we get from (3) the limit as q_{3} approaches q_{2}

$$
\begin{equation*}
a_{n}=D q_{1}^{n-1}+E_{n} q_{2}^{n-1}, n=1,2,3, \ldots, \tag{4}
\end{equation*}
$$

with

$$
\begin{aligned}
D & =\frac{q_{2}^{2} \alpha_{1}-2 q_{2} a_{2}+\alpha_{3}}{\left(q_{2}-q_{1}\right)^{2}}, \\
E_{n}=\frac{1}{\left(q_{2}-q_{1}\right)^{2}}\left\{\left[(n-3) q_{2}-(n-2) q_{1}\right] \alpha_{1} q_{1}\right. & -\left[(n-3) q_{2}-(n-1) \frac{q_{1}^{2}}{q_{2}}\right] a_{2} \\
& \left.+\left[(n-2)-(n-1) \frac{q_{1}}{q_{2}}\right] \alpha_{3}\right\}
\end{aligned}
$$

If all roots are equal, we get from (4) the limit as q_{2} approaches q_{1}

$$
\begin{equation*}
a_{n}=F_{n} q_{1}^{n-1}, u=1,2,3, \ldots, \tag{5}
\end{equation*}
$$

with

$$
F_{n}=\frac{(n-2)(n-3)}{2} a_{1}-\frac{(n-1)(n-3)}{q_{1}} a_{2}+\frac{(n-1)(n-2)}{2 q_{1}^{2}} a_{3}
$$

In the last of the possible cases for the roots of $P_{3}(x)=0$ we have one real root q_{1} and two conjugate complex ones q_{2}, q_{3}. Writing $q_{2}=r e{ }^{i \varphi}, q_{3}=\bar{q}_{2}=$ $r e^{-i \varphi}$ we get

$$
\begin{equation*}
a_{n}=G q_{1}^{n-1}+H_{n} r^{n-1}, n=1,2,3, \ldots, \tag{6}
\end{equation*}
$$

with

$$
G=\frac{r^{2} \alpha_{1}-2 r \cos \varphi \alpha_{2}+\alpha_{3}}{r^{2}-2 r q_{1} \cos \varphi+q_{1}^{2}},
$$

$$
H_{n}=\frac{\left(\alpha_{1} q_{1}-\alpha_{2}\right) r \sin (n-3) \varphi+\left(\alpha_{3}-\alpha_{1} q_{1}^{2}\right) \sin (n-2) \varphi+\left(\alpha_{2} q_{1}-\alpha_{3}\right) \frac{q_{1}}{r} \sin (n-1) \varphi}{\sin \varphi\left(r^{2}-2 r q_{1} \cos \varphi+q_{1}^{2}\right)}
$$

$$
r=\sqrt{q_{1}^{2}-\alpha q_{1}-\beta}, \quad \varphi=2 \arctan \sqrt{\frac{2 r+q_{1}-\alpha}{2 r-q_{1}+\alpha}}
$$

where q_{1} can be computed by the formula of CARDANO for the reduced form of $P_{3}(x)$ (without the quadratic term).

3. CONVERGENT SEQUENCES $\left\{a_{n}\right\}$

In the two-dimensional case, that means $\gamma=0$ in (1), we were able to characterize convergent sequences immediately from the real representation for a_{n} [2]. Some similar considerations yield in the three-dimensional case:

Theorem 1: The sequences $\left\{a_{n}\right\}$ defined by (1) are convergent if and only if the parameters α, β, γ are points of the three-dimensional region

$$
\begin{equation*}
\vartheta:=\left\{(\alpha, \beta, \gamma) \varepsilon \mathbb{R}^{3} \mid \alpha+\beta+\gamma \leq 1,-\alpha+\beta-\gamma<1, \gamma^{2}-\alpha \gamma-\beta<1\right\} \tag{7}
\end{equation*}
$$

Fig. 1 Region ϑ
for all real numbers $a_{1}, \alpha_{2}, \alpha_{3}$. In the interior ϑ of the region ϑ the sequences $\left\{a_{n}\right\}$ converge to zero. On the boundary $\alpha+\beta+\gamma=1$ of ϑ the limit of α_{n} is given by

$$
\begin{equation*}
\alpha:=\lim _{n \rightarrow \infty} a=\frac{\gamma a_{1}+(1-\alpha) a_{2}+\alpha_{3}}{2+\gamma-\alpha}, 2+\gamma-\alpha \neq 0 \tag{8}
\end{equation*}
$$

Proof: From the real representations for a_{n} we obtain the following necessary and sufficient conditions for convergence.

1. All roots of $P_{3}(x)=0$ are distinct and real:

$$
\begin{equation*}
-1<q_{1}, q_{2}, q_{3} \leq 1 \tag{9a}
\end{equation*}
$$

2. Two distinct real roots:

$$
\begin{equation*}
-1<q_{1} \leq 1,-1<q_{2}=q_{3}<1 \tag{9b}
\end{equation*}
$$

3. All roots are equal:

$$
\begin{equation*}
-1<q_{1}=q_{2}=q_{3}<1 \tag{9c}
\end{equation*}
$$

4. One real root and two conjugate complex ones:

$$
\begin{equation*}
-1<q_{1} \leq 1,0<q_{2} q_{3}=r^{2}<1 . \tag{9d}
\end{equation*}
$$

This means, for the polynomial $P_{3}(x)$, that

$$
\begin{align*}
& P_{3}(-1)=-1-\alpha+\beta-\gamma<0, \tag{10}\\
& P_{3}(1)=1-\alpha-\beta-\gamma \geq 0 .
\end{align*}
$$

We have the following relations between the coefficients and the roots of $P_{3}(x)$ (VIETA):

$$
\begin{align*}
q_{1}+q_{2}+q_{3} & =\alpha \\
q_{1} q_{2}+q_{2} q_{3}+q_{1} q_{3} & =-\beta \tag{11}\\
q_{1} q_{2} q_{3} & =\gamma
\end{align*}
$$

We start with the case $\gamma>0$. Then q_{1} may be the smallest of the positive roots, the only positive of the real roots, or the only real root of $P_{3}(x)=$ 0 . It follows from the last equation (11) with $0<q_{2} q_{3}<1$ from (9a)-(9d):

$$
0<\gamma<q_{1} .
$$

We can conclude that, in the interval [0, γ], there is no further root of $P_{3}(x)$; which, using the continuity of $P_{3}(x)$, means that $P_{3}(0)$ and $P_{3}(\gamma)$ have the same signs. So with $P_{3}(0)=-\gamma<0, P_{3}(\gamma)=\gamma\left(\gamma^{2}-\alpha \gamma-\beta-1\right)<0$, or with $\gamma>0$,

$$
\begin{equation*}
\gamma^{2}-\alpha \gamma-\beta<1 \tag{12}
\end{equation*}
$$

The case $\gamma=0$ leads to the known two-dimensional case [2] and corresponds to the fact that one or more roots are zero. There we have convergence for points $(\alpha, \beta) \varepsilon R^{2}$ which satisfy the inequalities

$$
\begin{equation*}
\alpha+\beta \leq 1,-\alpha+\beta<1, \beta>-1 \tag{13}
\end{equation*}
$$

If $\gamma<0$, then q_{1} may be the greatest negative of the negative roots, the only negative of the real roots or the only real root of $P_{3}(x)=0$. It follows from the last equation (11) with $0<q_{2} q_{3}<1$ that

$$
q_{1}<\gamma<0
$$

We conclude, as in the first case, that $P_{3}(0)$ and $P_{3}(\gamma)$ have the same signs. We have with $P_{3}(0)=-\gamma>0, P_{3}(\gamma)=\gamma\left(\gamma^{2}-\alpha \gamma-\beta-1\right)>0$ or because of $\gamma<0$

$$
\begin{equation*}
\gamma^{2}-\alpha \gamma-\beta<1 \tag{14}
\end{equation*}
$$

So we have convergence in all cases if and only if (α, β, γ) $\varepsilon \mathbb{R}^{3}$ satisfy the inequalities (10), (12), (13), and (14), which define the required region ϑ (Fig. 1).

If (α, β, γ) are points of $\underline{\vartheta}$, the interior of ϑ, we have $\left|q_{\nu}\right|<1, \nu=1$, 2,3 , and it follows with the limits

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{\mu} q_{v}^{n}=0, \mu=0,1,2 ; v=1,2,3 \\
& \lim _{n \rightarrow \infty} r^{n}=\lim _{n \rightarrow \infty}\left(q_{2} q_{3}\right)^{\frac{n}{2}}=0
\end{aligned}
$$

from the real representation (3)-(6) for α_{n}, that α_{n} converges to zero. If $P_{3}(1)=1-\alpha-\beta-\gamma=0$, we are on the boundary of ϑ (shaded area in Fig. 1). This means that 1 is a root of $P_{3}(x)$. We set $q_{1}=1$ and get, from (3), (4), or (6),

$$
a:=\lim _{n \rightarrow \infty} a_{n}=A=\frac{\gamma a_{1}-(\alpha-1) \alpha_{2}+a_{3}}{2+\gamma-\alpha}=\frac{(1-\alpha-\beta) \alpha_{1}-(\alpha-1) a_{2}+\alpha_{3}}{3-2 \alpha-\beta}=G
$$

Also, if $q_{2}=1$, we have, from (11), $q_{3}=\alpha-2,2 q_{3}+1=-\beta$, and $q_{3}=\gamma$, so that $\gamma^{2}-\alpha \gamma-\beta=q_{3}-\left(q_{3}+2\right) q_{3}+2 q_{3}+1=1$, which contradicts the inequalities (12), (14); thus, $q_{1}=1$ must be a single root. Dividing $P_{3}(x)$ by the linear term $(x-1)$, we get $P_{2}(x):=x^{2}+(1-\alpha) x+1-\alpha-\beta$. Since $q_{1}=1$ is a single root, we obtain $P_{2}(1) \neq 0$, so that $2+\gamma-\alpha=3-2 \alpha-\beta \neq 0$, as stated in (8).

4. CONVERGENT SERIES

By the use of the generating function

$$
\begin{equation*}
\frac{a_{1}+\left(\alpha_{2}-\alpha \alpha_{1}\right) x+\left(\alpha_{3}-\alpha a_{2}-\beta \alpha_{1}\right) x^{2}}{1-\alpha x-\beta x^{2}-\gamma x^{3}}=\sum_{\nu=0}^{\infty} a_{v+1} x^{\nu} \tag{15}
\end{equation*}
$$

we will give some limits of infinite series with $a_{v}, \nu=1,2, \ldots$, as terms. First, we determine the radius of convergence ρ of the power series in (15). It is given by the smallest absolute value of the roots of

$$
\begin{equation*}
Q_{3}(x):=1-\alpha x-\beta x^{2}-\gamma x^{3}=0 . \tag{16}
\end{equation*}
$$

Substituting in $Q_{3}(x) y=\frac{1}{x}, x \neq 0$, we get

$$
\begin{equation*}
Q_{3}\left(\frac{1}{y}\right)=\frac{1}{y^{3}}\left(y^{3}-\alpha y^{2}-\beta y-\gamma\right)=\frac{1}{y^{3}} P_{3}(y) . \tag{17}
\end{equation*}
$$

Using the notation of $\S 3$, with $q_{\nu}, \nu=1,2,3$, as the roots of $P_{3}(x)$ for the radius of convergence, we get

$$
\rho=\min \left\{\frac{1}{\left|q_{1}\right|}, \frac{1}{\left|q_{2}\right|}, \frac{1}{\left|q_{3}\right|}\right\}
$$

or as a further result,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{\rho}=\max \left\{\left|q_{1}\right|,\left|q_{2}\right|,\left|q_{3}\right|\right\} . \tag{18}
\end{equation*}
$$

If $(\alpha, \beta, \gamma) \varepsilon \underline{\vartheta}$ we have $\left|q_{\nu}\right|<1, \nu=1,2,3$, so that

$$
\rho>1,(\alpha, \beta, \gamma) \varepsilon \underline{\vartheta} .
$$

Especially, we have convergence in (15) for $x=1$. So we get for $x=1$:

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} a_{\nu}=\frac{(1-\alpha-\beta) \alpha_{1}+(1-\alpha) \alpha_{2}+\alpha_{3}}{1-\alpha-\beta-\gamma},(\alpha, \beta, \gamma) \varepsilon \underline{\vartheta} \tag{19}
\end{equation*}
$$

for $x=-1$:

$$
\begin{equation*}
\sum_{\nu=1}^{\infty}(-1)^{\nu-1} \alpha_{\nu}=\frac{(1+\alpha-\beta) \alpha_{1}-(1+\alpha) \alpha_{2}+\alpha_{3}}{1+\alpha-\beta+\gamma}, \quad(\alpha, \beta, \gamma) \varepsilon \underline{\vartheta} . \tag{20}
\end{equation*}
$$

Addition or subtraction of (19) and (20) and division by 2 yields
(21) $\sum_{\nu=1}^{\infty} a_{2 v-1}=\frac{\left[(1-\beta)^{2}-\alpha^{2}-2 \alpha \gamma\right] \alpha_{1}+(\gamma+\alpha \beta) a_{2}+(1-\beta) a_{3}}{(1-\beta)^{2}-(\alpha+\gamma)^{2}},(\alpha, \beta, \gamma) \varepsilon \underline{\vartheta}$
or

$$
\sum_{\nu=1}^{\infty} \alpha_{2 v}=\frac{\gamma(1-\beta) \alpha_{1}-[1-\beta-\alpha(\alpha+\gamma)] \alpha_{2}+(\alpha+\gamma) \alpha_{3}}{(1-\beta)^{2}-(\alpha+\gamma)^{2}},(\alpha, \beta, \gamma) \varepsilon \underline{\vartheta}
$$

REFERENCES

[1] M. Feinberg, "Fibonacci-Tribonacci," The Fibonacci Quarterly, Vol. I (1963), pp. 71-74.
[2] W. Gerdes, "Convergent Generalized Fibonacci Sequences," The Fibonacci Quarterly, Vol. 15, No. 2 (1977), pp. 156=160.
[3] A. G. Shannon \& A. F. Horadam, "Some Properties of Third-Order Recurrence Relations," The Fibonacci Quarterly, Vol. 10 (1972), pp. 135-145.
[4] C. C. Yalavigi, "Properties of Tribonacci Numbers," The Fibonacci Quarterly, Vol. 10 (1972), pp. 231-246.
[5] M. Wadill \& L. Sacks, "Another Generalized Fibonacci Sequence," The Fibonacei Quarterly, Vo1. 5 (1967), pp. 209-222.

