EXPANSION OF THE FIBONACCI NUMBER $F_{n m}$ IN n TH POWERS OF FIBONACCI OR LUCAS NUMBERS

A. S. GLADWIN

McMaster University, Hamilton, Ontario, Canada L854L7

Fibonacci numbers are defined by the recurrence relation $F_{m}+F_{m+1}=F_{m+2}$ and the initial values $F_{0}=0, F_{1}=1$. Lucas numbers are defined by $L_{m}=F_{m-1}$ $+F_{m+1}$. The well-known identities $F_{2 m}=F_{m+1}^{2}-F_{m-1}^{2}$ and $F_{3 m}=F_{m+1}^{3}+F_{m}^{3}-F_{m-1}^{3}$ are shown to be the first members of two families of identities of a more general nature. Similar identities for $L_{2 m}$ and $L_{3 m}$ can be generalized in similar ways.

1. Let $n=2 p$ be an even positive integer, m be any integer, and k be any integer except zero. Then

$$
F_{n m}=\sum_{r=-p}^{p} a_{r} F_{m+r k}^{n}=5^{-p} \sum_{r=-p}^{p} a_{r} L_{m+r k}^{n}
$$

where $\alpha_{0}=0, \alpha_{-r}=-\alpha_{r}$ and $\alpha_{1}, \alpha_{2}, \ldots, a_{p}$ are the solution of the p simultaneous equations
(1) $\sum_{r=1}^{p} a_{r}(-1)^{r k s} F_{r k(n-2 s)}= \begin{cases}5^{p-1} & \text { for } s=0 \\ 0 & \text { for } s=1,2, \ldots, p-1\end{cases}$
2. Let n, p, m, and k be as in 1 . Then

$$
L_{n m}=\sum_{r=-p}^{p} b_{r} F_{m+r k}^{n}=5^{-p} \sum_{r=-p}^{p} b_{r} L_{m+r k}^{n}
$$

where $b_{-r}=b_{r}$ and $b_{0}, b_{1}, \ldots, b_{p}$ are the solution of the $p+1$ simultaneous equations
(2) $\quad b_{0}+\sum_{r=1}^{p} b_{r}(-1)^{r k s} L_{r k(n-2 s)}= \begin{cases}5^{p} & \text { for } s=0 \\ 0 & \text { for } s=1,2, \ldots, p\end{cases}$
3. Let $n=2 p+1$ be an odd positive integer, and 1 et m and k be as in 1 . Then

$$
F_{n m}=\sum_{r=-p}^{p} c_{r} F_{m+p k}^{n} \quad \text { and } \quad L_{n m}=5^{-p} \sum_{r=-p}^{p} c_{r} L_{m+r k}^{n}
$$

where $c_{-r}=(-1)^{r k} c_{r}$ and $c_{r}=b_{r}$ for $r \geq 0$.
4. Since the proofs are similar in all cases, only that for the first identity need be given. The Fibonacci numbers are first written in the Binet form

$$
F_{u}=5^{-\frac{1}{2}}\left\{g^{u}-(-g)^{-u}\right\}
$$

where $g=\frac{1}{2}\left(5^{\frac{1}{2}}+1\right)$. Then for n even:

$$
\begin{aligned}
F_{n m} & =5^{-\frac{1}{2}}\left(g^{n m}-g^{-n m}\right)=\sum_{r=-p}^{p} a_{r} 5^{-\frac{1}{2} n}\left\{g^{m+r k}-(-g)^{-m-r k}\right\}^{n} \\
& =5^{-p} \sum_{s=0}^{n}\binom{n}{s}(-1)^{m s+s} g^{m(n-2 s)} \sum_{r=-p}^{p} \alpha_{r}(-1)^{r k s} g^{r k(n-2 s)}
\end{aligned}
$$

Equating coefficients of like powers of g for each value of s gives:
(3) $5^{p-\frac{1}{2}}=\sum_{r=-p}^{p} \alpha_{r} g^{r k n}$ for $s=0$

$$
\begin{align*}
& \text { (4) } 5^{p-\frac{1}{2}}=-\sum_{r=-p}^{p} a_{r} g^{-r k n} \text { for } s=n \tag{4}\\
& \text { (5) } 0=\sum_{r=-p}^{p} a_{r}(-1)^{r k s} g^{r k(n-2 s)} \text { for } s=1,2, \ldots, n-1
\end{align*}
$$

These $n+1$ equations can be rewritten in terms of Fibonacci numbers as follows: Equating the coefficients of like powers of g in (3) and (4) gives $\alpha_{-r}=-\alpha_{r}$ and $a_{0}=0$. Equations (3) and (4) are thus equivalent and can be rewritten in a common form

$$
\begin{align*}
5^{p-1} & =5^{-\frac{1}{2}}\left\{\sum_{r=1}^{p} a_{r} g^{r k n}+\sum_{r=-1}^{-p} a_{r} g^{r k n}\right\}=5^{-\frac{1}{2}} \sum_{r=1}^{p} a_{r}\left(g^{r k n}-g^{-r k n}\right) \tag{6}\\
& =\sum_{r=1}^{p} a_{r} F_{r k n}
\end{align*}
$$

Similarly, (5) can be rewritten as

$$
\begin{equation*}
0=\sum_{r=1}^{p} \alpha_{r}(-1)^{r k s} F_{r k(n-2 s)} \quad \text { for } s=1,2, \ldots, n-1 \tag{7}
\end{equation*}
$$

However, since $F_{-u}=-(-1)^{u} F_{u}$, this summation is unchanged when s is replaced with $n-s$, and since each term is zero when $s=p$, only $\frac{1}{2}(n-2)$ $p-1$ values of s give independent equations. These values can be taken as $s=1,2, \ldots, p-1$. Thus (6) and (7) together give p equations for the coefficients $\alpha_{1}, \alpha_{2}, \ldots, a_{p}$, and it is obvious that the conditions for the existence and uniqueness of the solution are satisfied.
5. For small values of n, the explicit expressions for a_{r} and b_{r} obtained by solving (1) and (2) can be reduced to simple forms by repeated use of the identities $L_{2 u}=L_{u}^{2}-2(-1)^{u}=5 F_{u}^{2}+2(-1)^{u}$. The results for $n=2,3,4$ are:

$$
\begin{aligned}
& \text { EXPANSION OF THE FIBONACCI NUMBER } F_{n m} \text { IN } n \text { TH POWERS OF } \\
& \text { FIBONACCI OR LUCAS NUMBERS } \\
& n=2 \quad 1 / a_{1}=F_{2} \quad 1 / b_{0}=-\frac{1}{2}(-1)^{k} F_{k}^{2} \quad 1 / b_{1}=F_{k}^{2} \\
& n=3 \quad 1 / b_{0}=-(-1)^{k} F_{k}^{2} \quad 1 / b_{1}=L_{k} F_{k}^{2} \\
& n=4 \quad 1 / a_{1}=F_{2 k}\left\{F_{k}^{2}-(-1)^{k} F_{2 k}^{2}\right\} \quad 1 / a_{2}=-(-1)^{k} L_{2 k} / a_{1} \\
& 1 / b_{0}=\frac{1}{2}(-1)^{k} F_{k}^{4} L_{k}^{2} \quad 1 / b_{1}=F_{k} / L_{k} a_{1} \\
& 1 / b_{2}=-(-1)^{k} L_{k}^{2} / b_{1}
\end{aligned}
$$

ACKNOWLEDGMENT

The writer wishes to thank Professor E. Baumann, Director of the Institute for Technical Physics, ETH Zurich, for the facilities placed at his disposal.
