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ABSTRACT 

Subbarao and Andrews have observed that the combinatorial technique used 
by F. Franklin to prove Eulerfs famous partition identity 

(l-x)(l-x2)(l-x3)(l-x1*) ••• = 1-x-x2 +x5 +x7 -x12 -x15 + ••• 

can be applied to prove the more general formula 

l-x-x2y(l-xy) -x3y2(±-xy)(±-x2y) - xhy3 (1 - xy) (1 - x2y) (1 - x3y) 

= 1 -x-x2y+x5y3+x7yk -x12ye -x15y7 + • •• 

which reduces to Eulerfs when y = 1. This note shows that several finite 
versions of Euler's identity can also be demonstrated using this elementary 
technique; for example, 

1-x-x2+x5+x7-x12 -x15 

= ( 1 - * ) ( 1 - ^ 2 ) ( 1 - ^ 3 ) ( 1 - ^ ) ( 1 - X 5 ) ( 1 - ; E 6 ) 

- x 7 a - x2) a - x3) a - xk) a - xs) +x7+s a - x3) a - x1*) -x7+e+5 

= a ~ x ) a - x 2 ) a ~ x 3 ) - x k a - x 2 ) a - x 3 ) + x l > + 5 a - x 3 ) - x k + 5 + 6 . 
By using Sylvester*s modification of Franklin's construction, it is also 
possible to generalize Jacobi's triple product identity. 

This research was supported in part by National Science Foundation grant 
MCS 72-03752 A03 and by the Office of Naval Research contract N00014-76-C-
0330. Reproduction in whole or in part is permitted for any purpose of the 
United States Government. 
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0. INTRODUCTION 

Nearly a century ago [7], [14, §12], a young man named Fabian Franklin 
published what was to become one of the first noteworthy American contribu-
tions to mathematics, an elementary combinatorial proof of Euler's well-known 
identity 

7 7 ( 1 - ^ ' ) = l-x-x2+x5+x7 = ] T ( - l ) k * ( 3 k 2 + f e V2, (o . i ) 
i - 1 -~<k<oo 

His approach was to find a nearly one-to-one correspondence between parti-
tions with an even number of distinct parts and those with an odd number of 
distinct parts, thereby showing that most of the terms on the left-hand side 
of (0.1) cancel in pairs. Such combinatorial proofs of identities often 
yield further information, and in the first part of this note we shall demon-
strate that Franklin's construction can be used to prove somewhat more than 
(0.1). 

In the second part of this note, we show that Sylvester's modification of 
Franklin's construction can be applied in a similar way to obtain generali-
zations of Jacobi's triple product identity 

y\a-q2j-lz)a-q2;j~lz-1)a-q2h = i - ^ + s " 1 ) + ^ ( 2 2 + 2"2)----
= ]T (-l)VV. (0.2) 

- •' '•'•-• - c o < k < o o 

1. THE BASIC INVOLUTION 

First let us recall the details of Franklin's construction. Let TT be a 
partition of n into m distinct parts, so that TT = \al9 ..., am\ for some in-
tegers a1 > ••• > am > 0, where al + ••• + am = n. We shall write 

£(TT) = n, V(TT) = m9 A(TT) = ax, (1.1) 

for the sum, number of parts, and largest part of TT, respectively; if TT is 
the empty set, we let £(TT) = V(TT) = X(TT) = 0. Following Hardy and Wright [8], 
we also define the "base" Z?(TT) and "slope" S(TT) as follows: 

3(TT) == min{j|j GIT}', a(iT) = min{j | X(TT) - j t TT}. (1.2) 

Note that if TT is nonempty we have 

A00 >. 6(TT) + V(TT) - 1 and V(TT) >. a(-rr). (1.3) 

The partition F(TT) corresponding to TT under Franklin's transformation is 
obtained as follows: 

(i) If $00 <_ 0(TT).. and 300 < V(TT), remove the smallest part, $00, and 
increase each of the largest 3(TT) parts by one. 

(ii) If 3(TT) > a (IT), and a 00 < V(TT) or a(Tr) + 3(TT) - 1, decrease each of 
the largest a(Tr) parts by one and append a new smallest part, a (IT). 
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(iii) Otherwise F(TT) = IT. [This case holds if and only if TT is empty or 
CF(7T) = V(TT) £ 3(TT) _< a(TT) +1.] 

These definitions are easily understood in terms of the "Ferrers graph" [14, 
p. 253] for the partition TT, as shown in Figure 1. It is not difficult to 
verify that F is an involution, i.e., that 

F{F(i\)) = TT (1.4) 

for all IT. 

largest part X = 6 largest part \ = 7 

® ® • • • (^/S slope a = 2 
m m ® ® 
N v < 

base 3 = h 

base 3 = 2 

TT F(TT) 

Fig. 1 Two partitions of 17 into distinct parts, obtained from each other 
by moving the two circled elements. 

For each I J> 0 there is exactly one partition TT such that A(TT) = I and 
F("n) = TT. We shall denote this fixed point of the mapping by / ; it has [&/2~\ 
consecutive parts, 

ft - {l, l - 1, ..., LV2J + l}. (1.5) 

(See Figure 2.) Let 

$ = {/„, /lf f2, . . - } (1.6) 
be the set of all such partitions. Note that the somewhat similar partitions 
{2& + 1, 2fc, ..., fe + 2} and {2&, 2fc - 1, ..., &} are not fixed under F> al-
though their bases and slopes do intersect. 

mm mm® m ® ® ® 

m m m 

JQ J I J 2 J 3 •'if ' 5 

Fig. 2 The partitions which remain fixed under F. 
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2. EXTENDED GENERATING FUNCTIONS 

If S is any set of partitions, we define the generating function of S by 
the formula 

Gs(x, y, z) ̂ x ^ V ^ V ^ . (2.1) 
TTES 

The i d e n t i t i e s we sha l l derive from Franklin 's construction are special cases 
of the following elementary r e s u l t : 

Tfieo îem 1% If S i s any set of p a r t i t i o n s , 

Gs(x9 y9 -y) = Gsn^(x, y, -y) + Gs\F{s) (x 9 y, -y) . ( 2 .2 ) 

Vtioo{\ Let TT be a p a r t i t i o n w i t h TT ' = F(TT) i if. Then £(TT ' ) = E(ir) , X(iTf) = 
X(TT) ± 1 , and v(iTf) = V(TT) + 1, hence 

*s(*y (^(-z,)^*) + ^ V U ° H / ) v U ° = 0. (2.3) 
This equation means that IT and TT ' do not contribute to Gs(x9 y9 -y) if they 
are both members of S. The only terms which fail to cancel out are from par-
titions if e S with F(if) = TT, namely the elements of 5D$, and those from par-
titions ifeS with F(if) £S9 namely the elements of S\F(S) . m 

3. THREE IDENTITIES 

In order to get interesting corollaries of Theorem 1, we must find sets S 
for which the corresponding generating functions are reasonably simple. 

First, let S be the set P of all partitions. Theorem 1 implies that 

Gp(x, y9 -y) = G^(x9 y9 -y). (3.1) 

Now 

Gp(x, y, z) 

and 

£$(*> y, s) 

Thus we have 

CoKoUiaAij 1.1: 

]T*V + 1 77 U " *J"2/) = J2 (-l)k-llxW-k)/2y3k-1 + x(-3kZ-^2y3k\. (3.5) 
^^1 i<j<i k>i \ ) 

i + 22 xZyz% J7 (i + x^z) (3.2) 
, > l 1 <J<£ 

1 + Z *£(£+1 )/2-L£/2j (U/2j + l)/2 £^U/2l (33) 

£ > l 

= 1 + ̂(^
3fc2-^2fc-lsfc+^(3^+fc)/2^2^fcY (3.4) 

k> 1 \ / 
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Franklin essentially considered the special case p 1 of this identity, 
when the left-hand side reduces to 1 - J"[j>i(l "" #J) • Equation (3.5) was 
originally discovered by L. J. Rogers [10, §10(4)], who gave an analytic 
proof. The fact that Franklin's correspondence could be used to obtain (3.5) 
was first noticed by M. V. Subbarao [12] and G. E. Andrews [2], 

Although the power series identity of Corollary 1.1 is formally true, it 
does not converge for all x and y; for example, if we set y - x~l we get the 
anomalous formula x~l - x"1 + x"1 - 1' - x + xh + x6 - .. . . To better under-
stand the rate of convergence, we can obtain an exact truncated version of 
the sum by restricting S to the set 

Pn = {A(TT) <n}. (3.6) 

Since 

Pn\F(Pn) = {TT|X(7T) = n and B(TT) <_ a(n) and 0(ir) < V(TT)} 

= {TT| A(TT) = n and BOO £ a(Tr) and BOO <_ nil), (3.7) 

we have 

i ^ b < n / 2 \b< 3 <.n-b /\n-b<c<.n / 

Thus Theorem 1 y i e l d s 

CoxoJULaJiy 7 . 2 : 

y%v + i y j (i - x )̂ 

X <-i)*-v3*2-*^3*"1 + XI (-I)^1^ 
i < k < ( n + i ) / 2 i < k < n / 2 

^ - l r ( 3 k 2 + k ) / 2 3fc 

+ 
i<b<n/2 \b<3<-n-b /\n-b<j<n / 

For example, the cases n = 4 and n = 5 of this identity are 

#z/2 +x2y3 (1 - r a / ) +^3z/If (1 -#z/) (1 -x2y) + xhys (1 -xzy) (1 -^ 2 iy ) (1 -# 3 ? / ) 
= ^ 2 + x2y3 -x5y5 -x7ys - x5y6 (1 - x2y) (1 -# 3 z / ) + ^ 5 + 4 z / 7 ; (3 .9 ) 

#2/2 + x 2 z / 3 ( l -xzy) + #3z/lf (1 -xy) (1 -^ 2 2 / ) +x l f z / 5 ( l -aci/) (1 -x2y) (1 -# 3 z / ) 
+ a?5z/6 (1 - xy) (1 - x2y) (1 - *3z/) (1 - x^y) 
- xy2 +x2yz - x5y5 - x7ys +xl2y8 - x6y7 (1 - ^ 2 z / ) (1 - #3zy) (1 - xhy) 

+ x6 + 5y8(l-x3y). (3 .10) 
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Setting y = 1 and subtracting both sides from 1 yields truncated versions of 
Eulerfs formula which appear to be new; e.g., 

= ( l - ^ K l - ^ M l - ^ M l - ^ ) -x5(l-x2)(l-x3)+x5 + h; (3.11) 
1-x-x2 + x5 +x7 -x12 

= (1 - x) (1 - x2) (1 - x3) (1 - xh) (1 - x5) 
-x6a-x2)(l-x3)(l-x1*) + x6 + 5(l-x3); (3.12) 

1 -x-x2 +x5 +x7 -x12 -x15 

= (1 - x) (1 - x2) (1 - x3) (1 - xh) (1 - x5) (1 - x6) 
- x 7 a - x2) a - x3) a - xh) a - x5) + x7+s a - x3) a - x1")-x7+s+5. (3.13) 

Essentially the same formulas, but with n decreased by 2, would have been 
obtained if we had set y = x~l in the identity of Corollary 1.2. 

Let us also consider another family of partition sets with a reasonably 
simple generating function, 

Sn = {TT|B.(IT) > X(TT) - n and a (IT) >_ A(TT) - n}. (3.14) 

These sets are closed under F, for if IT f = F(i\) ^ IT we have either 

(i) X(TT') = A(TT) + 1, B(7T') >. 3(TT) + 1, and a(TT') = 6(TT), or 

(ii) X(TT') = X(TT) - 1, B(TT') >.a(7r), and a(TT') ^a(TT). 

Note that 5 n is finite, since TT £ £ n implies that 

2X(TT) - 2n <_ B(ir) + a(ir) - 1 <_ X(ir), 

hence A (IT) <. 2n. The set of fixed points Sn O $ is |/0, fx, ..., f 2n } > and 

ŝ (x, y, s) - £p (x, i/, 2) + ^ " V y M J~|" (1 + a'ajw J"|" a^aY (3.15) 
n < & < 2 n \Jl - n < 7 < n / \ n < 7 < £ / 

so Theorem 1 yields a companion to Corollary 1.2: 

CoKoltoJifJ 1.3: 

1 < £ fL n l<,j < I 1 < k 1. n 

l < b < n \b<3<.n /\n<j <_n + b / 

For example, the cases n = 2, 3 of this identity are 
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xy2 +x2y3{l-xy) = xy2 + x2y3 - x5y5 - x7ys - x3yh (1 - x2y) + x3 + hy6 ; 
xy2 +x2z/3( l -xy) + x3yh (1 - xy) (1 - x2y) = xy2 + x2y3 - x5y5 - x7y6 +x12y8 

+ x15ys-xhyHl-x2y)(l-x3y)+xl* + 5y7(l-x3y)-xl*+5+SyS-

Setting y = 1 and subtracting from 1 leads to formulas somewhat analogous to 
(3.11) and (3.13): 

l-x-x2+x5+x7 = (l-x)(l-x2)-x3(l-x2)+x3 + l¥; (3.16) 

l-x-x2+x5+x7 -x12 - x 1 5 == ( 1 - ^ ) ( 1 - ^ 2 ) ( 1 - ^ 3 ) - ^ ( l - ^ K l - r c 3 ) 

+ *I t + 5 ( l - x 3 ) - ^ + 5 + 6 . (3.17) 

Let us restate the identities arising from Corollaries 1.2 and 1.3 when 
y = 1, where n is even in Corollary 1.2: 

^ {-l?(x(3kl-W2 +x^2+k»2) 1 + 

= S (-D^ ( 2 n + 2 ) k " k ( k + i ) / 2 X T ( i •xj) (3-i8) 
0 < k < n k < j < 2 n - k 

= \ ^ (-i)kxnk+Mk+i)/2 J T (1 - xi). (3.19) 

0£k<Ln k < ^ n 

The latter formula was discovered by D. Shanks [11] in the course of some ex-
periments on nonlinear transformations of series; he observed that it can be 
proved by induction on n without great difficulty. There is also a short 
proof of (3.18): Let 

A(k9 n) = (l-xk) + xk(l-xk)(l-xk+1) + -.. +xkn(±-xk) ••• (l~xk+n), (3.20) 

i?(fc, n) =x{n+1)k (l-xk+l) ••• (l-xk+n). (3.21) 

Then A(0, n) = 09A(k, 0) = l-xk
9A(k9 -1) = 0, and it is not difficult to show 

that 

A(k9 n) = l-x2k + 1 - R(kf n) - x3k+2A(k + l9 n-2) if n > 0. (3.22) 

Iteration of this recurrence yields identity (3.18). The use of this recur-
rence is actually only a slight extension of Euler's original technique [6] 
for proving (0.1). 

It is interesting to compare (3.18) and (3.19) to "classical" formulas on 
terminating basic hypergeometric series, as suggested in a note to the au-
thors by G. E. Andrews. If we set a = 1, h =c = d= °°, and q - x in a highly 
general identity given by R. P. Agarwal [1, Eq. (4.2)], we obtain 

V (-i)̂ Hk+i)/2/ j~y (1 _ xo\ j~y (1 __ xo)m (3#23) 
Tvir, Y<j<.2n-k II l<c<^n-k 

1 + 
l±k < n 

0 < k< n 
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In p a r t i c u l a r , when n = 3 th i s formula gives the following analog of (3.13) 
and (3.17): 

l-x-x2+x5+x7-x12 -x15 = a - ^ H l - ^ H l - ^ H l - ^ H l - ^ H l - * 6 ) 
a~x)(i~x2)(i-x3) 

^a-x^g-x^a-x^a-x5) + ^ a - ^ a - ^ ) _ ^i+2+3 (3 24) 
a-x)a-x2) a~x) 

k. SYLVESTER'S INVOLUTION 

Let us now turn to Jacobifs identity (0.2), which is formally equivalent 
under the substitution q2 - uv and z1 = uv~l to 

J7d - wM"1) (1 - uV) (1 - uj ~ V ) 

= 1 + J^(-l)k(u{k2+k)/2v{kZ-k)/2 + u{kZ-k)/2v{k2+k)l2). (4.1) 
k>l 

The left-hand side of this equation can be interpreted as involving parti-
tions of Gaussian integers m + ni into distinct parts of the form p+qi9 where 
max(p, q) > 0 and \p - q\ <_ 1; the coefficient of umvm will be the excess of 
the number of such partitions with an even number of parts over those with an 
odd number of parts. The right-hand side says that there exists a nearly 
one-to-one correspondence between such even and odd partitions, the only un-
matched partitions being of the form 

{l, 2 + i, ..., k+(k-l)i\ or [i9 l + 2i, ..., k-l + ki). (4.2) 

An explicit correspondence of this sort was discovered by J. J. Sylvester 
[14, §§57-61, 64-68] shortly after he had learned of Franklin1s construction; 
at that time Sylvester was a professor at Johns Hopkins University in Balti-

*The literature contains several incorrect references to the history of 
SylvesterTs construction. Sudler [13] says that the approach taken by Wright 
[15] is essentially that of Sylvester; but in fact it is essentially the same 
as another construction due to Arthur S. Hathway, quoted by Sylvester in [14, 
§62]. Zolnowsky [16] independently rediscovered Sylvester?s rules (i)-(iv), 
and observed that these were sufficient to prove Jacobi?s identity since 
they will handle all cases m + ni with m >_n* 

Sylvester's original treatment has apparently never been cited by anyone 
else, possibly because it comes at the end of a very long paper; furthermore 
his notation was rather obscure, and he made numerous careless errors that a 
puzzled reader must rectify. Indeed, the present authors may never have been 
able to understand what Sylvester was talking about if Zolnowsky ?s clear 
presentation had not been available. 
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We shall represent complex partitions TT by three real partitions, TT + , TT0, 
TT_, containing respectively max(p, q) for those parts p + qi in which p-q = +l, 
0, or -1. For example, the complex partition 

TT = {3 + 2i, 2 + i, 1, 3 + 3i, 1 + i, 3 4- H) 

of 13 + H i will be represented by 

TT + = {3, 2, l}, TT0 = {3, l}, TT. = {4}. 

Sylvester noted that if % is artificially set equal to 2, we obtain a one-to-
one correspondence between the complex partitions of m+ni and a subset of 
the real partitions of m + 2n into distinct parts; TT+, TT0, and TT_ map into the 
parts congruent respectively to +1, 0, and -1 modulo 3, hence Jacobifs iden-
tity implies Euler's. 

In order to present Sylvester*s construction, we recall the definitions of 
£(?!"), V(TT), A(TT), 3(T0? and a(7r) for real partitions in Section 1 above; we 
also add two more attributes, 

T[TT] = mln{k\k + l£i\}9 (4.3) 

and 

a[i] = mln{k\k£-n and fe>T(ir)|. (4.4) 

By convention, the minimum over an empty set is 00; thus, 3[TT] = °°  if and only 
if TT is empty, and a[ir] = °°  if and only if TT has the form {l, 2, ..., k) for 
some k >_ 0. Sylvester defined an involution F(TT) on complex partitions TT by 
what amounts to the following seven rules: 

(i) If 3(^0) SO(i\+) , remove the smallest part, 3(TT0), from 71"0 and increase 
each of the largest 3(TT0) parts of 7T+ by one. 

(ii) If 3(TT0) > a(TT+) > 0 and a(7T+) f A(TT+), decrease each of the largest 
0(11+) parts of TT+ by one and append a new smallest part, a(Tf+) , to TT0. 

(iii) If 3(TT0) >a(TT+) = X(TT+) and 3(TT0) < a(TT+) + 3(TF_) , remove the smallest 
part, 3(TT0), from TT0 and append a new largest part, o(n ) + 1, to TT 
and a new smallest part, 3(TT0) - G(TT+) , to TT_. 

(iv) If 3(TT0) >a(TT+) = A(TT+) > 0 and 3(TT0)+1 > a(TT+) + 3(TT_), remove the 
largest part, 0(u+) , from TT+ and the smallest part, 3(TT_) , from TT_ 
and append a new smallest part, a(TF+) + 3(TT_) - 1, to TT0. 

(v) If A(TT+) = 0 and a(TT-) > 3(TT0) + T(TT-) and T(TT_) >0, remove the small-
est part, 3(TT0), from TT0 and replace the part T(TT-) in TT- by T(TT_) + 
3(TT0). 

(vi) If A(TT+) = 0 and a(TT_) < 3(TT0) + T(TT_) 4- 1, replace the part a(TT_) in 
TT- by T(TT_) + 1, and append a new smallest part, a(iT-) - T(TT_) - 1, to 
TT0. 

(vii) Otherwise JP(TT) = TT. [This happens if and only if TT has the form 
(4.2).] 
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It can be shown that F(F(u)) = TT, and that in fact rules (i)-(ii), (iii)-(iv), 
(v)-(vi) undo each other.* 

For example, Sylvester's correspondence pairs up the complex partitions in 
the following way, if we denote partitions by listing the respective elements 
of TT + , 7T0, 7T_ separated by vertical bars:*r 

3111 •*+ 4|| rules (i) and (ii) 

2l|l|l +-* 311 11 rules (i) and (ii) 

l|2l| «-* 2|2| rules (i) and (ii) 

1131 *-*• 2l||2 rules (iii) and (iv) 

12121 -*-* | 141 rules (v) and (vi) 

11131 +-> | 132 rules (v) and (vi) 

5. GENERATING FUNCTIONS REVISITED 

If S is a set of complex partitions, we let 

GS(U, v, y,B) = Y, u*lM U ' £ U ) yM s V U ) • <5-u 
TieS 

where 

q?E(7r) = E(TT+) + E(TT0) + S(TT_) - V(TT_) ; 

^Z(TT) = Z(TT + ) - V(7T + ) + E(TT0) + E(TT- ) ; 

( A(TT+) i f A(TT+) > 0; 
X(TT) = { ( 5 .2 ) 

( - T ( T T - ) i f X(TT+) = 0. 

These definitions have the property we want, as shown in the following theo-
rem. 

*At this point one cannot resist quoting Sylvester, who stated that these 
rules possess what he called Catholicity, Homoeogenesis, Mutuality, Inertia, 
and Enantiotropy: "I need hardly say that so highly organized a scheme . . . 
has not issued from the mind of its composer in a single gush, but is the re-
sult of an analytical process of continued residuation or successive heaping 
of exception upon exception in a manner dictated at each point in its devel-
opment by the nature of the process and the resistance, so to say, of its 
subject-matter" [14, p. 314], 

^These are the complex partitions whose sums have the form k+ (11-2/c)^. 
Sylvester gave an incorrect table corresponding to these 12 partitions at the 
bottom of [14, p. 315]; in his notation, he should have written 

"1st Species. 11 3.8; 6.3.2 6.5; 8.2.1 3.5.2.1. 
2d Species. 9.2 5.2.4. 
3d Species. 10.1 6.4.1; 7.4 3.7.1." 
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TkdOtl&n 21 Let S be any set of complex partitions, and let $ be the set 
of all complex partitions of the form (4.2). Then 

Gs(u9 v, y9 -y) = Gsn^(u9 V9 y9 -y) + GS\F{S) (u, v9 y9 -y). (5.3) 

Pfioofi: As in Theorem 1, we need only verify that if Tr' = F(TT) ^ TT we have 
E(irf) = Z(TT), A(TT') = A (IT) ± 1, and v(ir0f) = V(TT0) + 1. Rules (i), (iii), (v) 
all leave £ unchanged, decrease V(TT0), and increase A Or); rules (ii), (iv), 
(vi) are the inverses. There is one slightly subtle case worth discussing: 
Rule (iii) applies when A(TT+) = 0 and it changes A(TT+) to 1; in that case the 
hypothesis 3(TT0) < 3(TT ) implies that T(TT-) = 0, hence A(TT) = 0. • 

6. JACOBI-UKE IDENTITIES 

We shall apply Theorem 2 only to two infinite sets of partitions, leaving 
it to the reader to discover interesting finite versions of Jacobi!s identity 
analogous to Corollaries 1.2 and 1.3. 

If P is the set of all complex partitions, we have 

GP(u9v9y,z) = (yVt>*-y(Tj U + K V ^ V T T U H V - V ) ) 
\Z>1 \l<j<£ A Q>\ I 

Y]y-{ JT u'-ivH TT (i+^'~V))j 77 u+wVa); (6.D + 

furthermore 

2) G, (u9 v9 y9 B) - 1 + Y (u{k2+k)l2v{k2- k)l2yk + r^' k)l2v{kZ + k)l2y'k) . ( 6 . 

Setting z = -y in (6.1) gives the identity Gp(u9v9y9-y) = G^(u9 V9 y, -y) , 
which can be rewritten as 

CofioUaAy 2J: 

Z i SL SI-1 / \ 

J<0 

Z ) M (k2+k)/2y(k2^)/2 * 
-00<fc<0 

Our derivation makes it clear that this formula reduces to (4.1) if we set 
y = 1 and replace (u, v) by (~u9 -v); it is therefore a three-parameter gen-
eralization of JacobiTs identity. 

The right-hand side of Corollary 2.1 can be expressed as 

^(^z/)(k2+k)/2(z;2/-1)(k2"k)/2 = Y\(l + uj-lv'y-l)(l+ujv^1y)(l-u'vj) 
- o o < / c < o o J < 1 
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by Jacobifs identity (4,1), hence Corollary 2.1 implies that 

V " yluzv1'1 = —jg+ui^yiy-1) (l+u^v^~ly) (1-uV) 

-oo^ooTT(l + ̂ J + ^ ' + £"1) 3>i (1 + w V " 1 ) (1 + M V " 1 ) ( 1 - M V I / ) " 

Let us set a = -V~l , q - UV 9 and x = wi?z/, to make the structure of this for-
mula slightly more clear; we obtain 

y^ xn
 = T-r (1 - fl"V"V'+ 1) (1 - axg*) (1 - <7J'+1) (6 3 ) 

-oô Wco T T d - < V + n ) k>o (l - a" V + 1) (1 - aqi) (1 - xq*) 
j>o 

This three-parameter identity turns out to be merely the special case b = 0 
of a "remarkable formula with many parameters" discovered by S. Ramanujan 
(see [8, Eq. (12.12.2)]); Ramanujanfs formula, for which a surprisingly sim-
ple analytic proof has recently been found [5], can be written 

_ — (i - ba^g*) (1 - a'lx- V + 1) (1 - axq*) (1 - q^1) ^ ( ^ 4 ) 

j>o (i-ia-v-you-a~ V+1)(i-<V)(i- v') 

If we let S be the set of all complex partitions with TF+ nonempty, 
Gs(u, V,y9 z) and Gs n§ (u9 V9 y, z) are given by the terms in (6.1) and (6.2) 
involving yl for £ >_ 1. The set S\F(S) consists of those partitions with 
7T+ = {1} and g(TT-) < 3(7T0)9 hence 

Gs\F{s)(u9v9y, z) = w^^ufc"1y^J7(l + Mj^js)(l + Mj"1z;J). 
& > 1 J > fc 

By Theorem 2, we obtain 

Co/io££aA£/ 2 . 2 : 

\StTi i< j<«. / V j> i / 

= 22u
{k2 + k)/Vk2 -k)/V + y^y^JJa -u'v*y)d+^~^j)• 

If we subtract this identity from that of Corollary 2.1, we get the for-
mula for the complement of S, namely 

£ > 0 \ l < j < £ / \ J > £ + 1 / \ j > l 
2/) 
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- £ M
( k * - k ) ' V k 2 + k ) V k - y j y v T T a - ^ ^ a + ̂ '-V). (6.5) 

Putting y = 1 reduces the left-hand side to TTj>0(l - u3V3) (1 + u3 ~1V3); hence we 
obtain 

^ ^ n u - w V m + ^ ' - V ) = jyx'-tt/y*1^'2. (6.6) 
£> > 0 J > ̂  k > 0 

Let q = uv and a^-M*"1; this formula is equivalent to the identity 

Y,qbT\a-qi)a-qix) = £>*)kc?(k2 + k)/2. (6.7) 
2? > 0 J > i> fc > 0 

Equation (6.7) can be derived readily from known identities on basic hy-
pergeometric functions. Let us first divide both sides byJ^\->l(l-qJ)(l-q3x)> 
obtaining 

S^_ = / 1 lV(-ar)k ' 
„•*« T T /i _„„o+i\ri „i + i^ T T n j + iwn „c + i\l^~X q 

. _ . ^ c „{kz + k)l2 

fa TT (i-v+1)(i-4j+1) I n ^ - V ^ m - ^ * 1 ) ] ^ 
0 < j < n \ j > 0 

Now we use E. Heine*s important transformation of such series, a five-param-
eter identity [9, Eq. 79] which essentially states that 

f(u, v; a, b; q) = f(v9 u; b, a; q) 

if 

f(u, v; a, b; 0 - feu* JT ^ - ^ ^ ' ^ \(jl(±^\. ( 6 .8 ) 
\frfo o<j<n ( i - ^ ) ( i - ^ + 1 ) / \ i > o \ i - a u ^ / / 

In our case we let u = q9 v = x/b, a = 0, and 2? -* °°, obtaining the desired 
result: 

E - V r r a - *<+i A 

fe*k TT ( V ) V T T — 1 — ^ 
\^To 0<3<n /V-° (±-Xq0 + l)) 

0 <J<n 

It is not clear whether or not the more general equation (6.5) is related to 
known formulas in an equally simple way. 

An amusing special case of (6.7) can be obtained by setting q = x2 and 
multiplying both sides by x: 
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^ ^ 7 7 ( 1 - ^ ' ) = x-x^+x3 --•• = £(-l)ka?(k + 1)\ (6.9) 
k odd C >k k>0 

"The partitions of n into an odd number of distinct parts in which the least 
part is odd are equinumerous with its partitions into an even number of dis-
tinct parts in which the least part is odd, unless n is a perfect square." 
An equivalent statement was posed as a problem by G. E. Andrews several years 
ago [3], and he has sketched a combinatorial proof in [4, pp. 156-157], 
However, there must be an involution on partitions which proves this formula! 
If the reader can find one, it might well lead to a number of interesting 
new identities. 
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