COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL $F_{3qr}(x)$

MARION BEITER

Rosary Hill College, Buffalo, New York 14226

Let F_m be the *m*th cyclotomic polynomial. Bang [1] has shown that for m = pqr, a product of three odd primes with p < q < r, the coefficients of $F_m(x)$ do not exceed p-1 in absolute value. The smallest such *m* is 105 and the coefficient of x^7 in F_{105} is -2. It might be assumed that coefficients 2 and/ or -2 occur in every F_{3qr} . This is not so. It is the purpose of this paper to characterize the pairs q, r in m = 3qr such that no coefficient of absolute value 2 can occur in F_{3ar} .

1. PRELIMINARIES

Let $F_m(x) = \sum_{n=0}^{\varphi(m)} c_n x^n$. Then for m = 3qr, c_n is determined [1] by the number

of partitions of n of the form:

$$n = a + 3\alpha a + 3\beta r + \gamma a r + \delta_1 a + \delta_2 r, \tag{1}$$

 $0 \leq a < 3$; α , β , γ , nonnegative integers; $\delta_i \in \{0, 1\}$. If *n* has no such partition, $c_n = 0$. Each partition of *n* in the form (1) contributes +1 to the value of c_n if $\delta_1 = \delta_2$, but -1 if $\delta_1 \neq \delta_2$. Because $F_m(x)$ is symmetric, we consider only $n \leq \varphi(m)/2 = (q-1)(r-1)$. For n > (q-1)(r-1), $c_n = c_{n'}$, with $n' = \varphi(m) - n$. We note that for $n \leq (q-1)(r-1)$, γ in (1) must be zero.

A permissible partition of n is therefore one of these four:

$$P_{1} = \alpha_{1} + 3\alpha_{1}q + 3\beta_{1}r, \qquad P_{2} = \alpha_{2} + 3\alpha_{2}q + 3\beta_{2}r + q + r,$$

$$P_{3} = \alpha_{3} + 3\alpha_{3}q + 3\beta_{3}r + q, \qquad P_{\mu} = \alpha_{\mu} + 3\alpha_{\mu}q + 3\beta_{\mu}r + r.$$
(2)

Partitions P_1 and P_2 will each contribute +1 to c_n , while P_3 and P_4 will each contribute -1. When $n \leq (q-1)(r-1)$, only one partition for each P_i , i = 1, ..., 4, is possible [1].

Lemma 1: For any β_i in (2), $3\beta_i \leq q - 2$ for all q.

Proof: Following Bloom [3] we have $3\beta_i r \leq (q-1)(r-1) \leq (q-1)r$. Thus, $3\beta_i \leq q-1$.

Corollary: $3\beta_i \leq q - 3$ for i = 2, 4.

Lemma 2: Either $r + q \equiv 0 \pmod{3}$ or $r - q \equiv 0 \pmod{3}$, for all primes q and r with $3 \leq q \leq r$.

Ptoof: Let q = 2k + 1, $r = 2k_1 + 1$. Since 3 divides one and only one of the numbers 2t, 2(t+1) when 2t+1 is a prime, it follows that 3 divides one and only one of the numbers $r + q = 2(k + k_1 + 1)$ or $r - q = 2(k - k_1)$.

2. BOUNDS ON THE COEFFICIENTS

We set 3 < q < r and make repeated use of the expressions:

$$P_2 - P_1 = a_2 - a_1 + 3(a_2 - a_1)q + 3(\beta_2 - \beta_1)r + q + r = 0;$$
(3)

$$P_{4} - P_{3} = a_{4} - a_{3} + 3(a_{4} - a_{3})q + 3(\beta_{4} - \beta_{3})r + r - q = 0.$$
(4)

Theorem 1: In $F_{3qr}(x)$,

- (a) if $r q \equiv 0 \pmod{3}$, then $-1 \leq c_n \leq 2$,
- (b) if $r + q \equiv 0 \pmod{3}$, then $-2 \leq c_n \leq 1$.

Proof of (a): Assume $c_n = -2$ for some n, i.e., partitions of n of forms P_3 and P_4 exist. Taking (4), modulo 3, we obtain $a_4 - a_3 \equiv 0 \pmod{3}$. But a < 3, so that $a_4 = a_3$. Now taking (4), modulo q, we obtain $[3(\beta_4 - \beta_3) + 1]r \equiv 0 \pmod{q}$. Then $3(\beta_4 - \beta_3) + 1 = \beta q$, for some integer $\beta \neq 0$. Either $3(\beta_4 - \beta_3) = \beta q - 1 \ge q - 1$, or $3(\beta_3 - \beta_4) = |\beta|q + 1 \ge q + 1$. But $3\beta_i \le q - 2$ by Lemma 1. Therefore, P_3 and P_4 cannot both exist and we have $c_n \ne -2$.

The proof of (b) follows from a similar argument by considering (3), modulo 3, and then modulo q.

Remark 1: F_{3ar} may have a coefficient of 2 or of -2 but not of both.

Remark 2: If q and r are twin primes, $c_r = -2$ with $P_3 = 2 + q$, $P_4 = r$.

3. SPECIAL CASES

Before taking up the general case, we consider $r = kq \pm 1$ and $r = kq \pm 2$. We prove a theorem about $r = kq \pm 1$.

Theorem 2: Let $r = kq \pm 1$. In $F_{3qr}(x)$, $|c_n| \leq 1$ if and only if $k \equiv 0 \pmod{3}$.

Proof: To show the sufficiency of the condition, let r = 3hq + 1, with $q \equiv 1 \pmod{3}$. Then $r - q \equiv 0 \pmod{3}$, and $c_n \neq -2$ by Theorem 1. We show $c_n \neq 2$, i.e., there is no *n* for which partitions P_1 and P_2 can both exist. Taking (3), modulo 3, we obtain $a_2 - a_1 = 1$ or -2. We note that $r \equiv 1 \pmod{q}$. Then (3), modulo *q*, leads to one of the equations:

$$3(\beta_2 - \beta_1) = \beta_q - 2$$
 or $3(\beta_2 - \beta_1) = \beta_q + 1$

with $\beta \equiv 2 \pmod{3}$. Obviously, there is no value of β which satisfies Lemma 1. Hence there is no n, $0 \leq n \leq (q-1)(r-1)$, for which partitions P_1 and P_2 both exist. Similarly, with $q \equiv 2 \pmod{3}$, it can be shown that there is no n for which partitions P_3 and P_4 can both exist. When r = 3hq - 1, $r \equiv 2 \pmod{3}$

COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL $F_{3qr}(x)$

3). If $q \equiv 2$, the proof leads to the same two equations as above with $\beta \equiv 1$. Thus both equations are inconsistent with Lemma 1. If $q \equiv 1$, the same equations appear with β_2 and β_1 replaced by β_4 and β_3 , respectively, and $\beta \equiv 2$. Thus $|\sigma_n| \leq 1$.

The necessity of the condition $k \equiv 0 \pmod{3}$ is shown by the counterexamples in Table 1. Values of k are given modulo 3. For each n, other partitions are not possible. We illustrate with the first counterexample, r = kq + 1 with $k \equiv 1$. The only possible r and q are $r \equiv 2$ and $q \equiv 1 \pmod{3}$. Note that for n = r, $n \equiv 2 \pmod{3}$. Thus in partitions P_1 or P_2 , $a_1 = a_2 = 2$. Then $P_1 = 2 + 3\alpha_1q + 3\beta_1r = r = P_2 = 2 + 3\alpha_2q + 3\beta_2r + q + r$. In neither P_1 nor P_2 is it possible to find nonnegative α and β to satisfy the equations. Hence, the coefficient of x^r in F_{3qr} is -2.

٦	[ah]	le 1	l r	=	ka	+	1	
	ab	ie i	1 1'	_	ĸa	-		

k				Examples				
(mod 3)	r	Partitions	of n	c_n	9	r	n	
1	kq + 1	$P_3 = 1 + (k - 1)q + q$	$P_4 = p$	-2	7	29	29	
1	kq - 1	$P_3 = (k - 1)q + q$	$P_{4} = 1 + r$	-2	5	19	20	
2	kq + 1	$P_1 = 1 + (k + 1)q$	$P_2 = q + r$	2	5	41	46	
2	kq - 1	$P_1 = (k + 1)q$	$P_2 = 1 + q + r$	2	7	13	21	

Theorem 3: Let $r = kq \pm 2$. In $F_{3qr}(x)$, $|c_n| \leq 1$ if and only if $k \equiv 0$ and $q \equiv 1 \pmod{3}$.

The proof follows the method in Theorem 2 and is omitted here. Table 2 gives counterexamples to show the necessity.

Tab	le	2	r	=	kq	±	2
-----	----	---	---	---	----	---	---

k				Exam	ples	
(mod 3)	r	Partitions of <i>n</i>	Cn	9	r	n
1 3)	kq + 2	$P_1 = 2 + (q + 1)r/2$ $P_2 = 1 + (q - 1)kq/2 + q + r$	2	5	17	53
a ≣ o (mod	kq - 2	$P_3 = (q + 1)r/2 + q$ $P_4 = 1 + (q - 1)kq/2 + r$	-2	5	13	44
1	kq + 2	$P_3 = (k - 1)q + q + 2 P_4 = r$	-2	5	37	37
1	kq - 2	$P_3 = (k - 1)q + q$ $P_4 = r + 2$	-2	7	47	49
2	kq + 2	$P_1 = (k + 1)q + 2$ $P_2 = q + r$	2	7	37	44
2	kq - 2	$P_1 = (k + 1)$ $P_2 = q + r + 2$	2	5	23	30

304

[Aug.

4. THE GENERAL CASE

More generally, for all primes q and r with 3 < q < r, we have r = (kq + 1)/h, or r = (kq - 1)/h, $h \leq (q - 1)/2$. If h = 1, Theorem 2 applies. Therefore we set 1 < h. In $r = (kq \pm 1)/h$, we may consider r, q, k, ± 1 as four independent variables with h dependent. Since r and q each have two possible values modulo 3 and k has three, there are 24 cases to be examined. We shall examine one of them. Then we shall present Table 3 showing all 24 cases and from the table we form a theorem which states conditions on q and r so that $|c_n| \leq 1$ in F_{3qr} .

First we take $r \equiv q \equiv 1$, $k \equiv 0 \pmod{3}$ in r = (kq-1)/h, $1 < h \leq (q-1)/2$. Note that $h \equiv 2$. Since $r - q \equiv 0 \pmod{3}$, $c \neq -2$ by Theorem 1. We show $c_n \neq 2$. Taking (3), modulo 3, we find $a_2 - a_1 = -2$ or 1. Then taking (3), modulo q, we obtain two possible congruences:

$$-2 + [3(\beta_2 - \beta_1) + 1](-1/h) \equiv 0$$
 and $1 + [3(\beta_2 - \beta_1) + 1](-1/h) \equiv 0$.

The first leads to the equation $3(\beta_2 - \beta_1) = \beta q - 2h - 1$ with $\beta \equiv 2$. No such value of β will satisfy Lemma 1. The second congruence leads to the equation $3(\beta_2 - \beta_1) = \beta q + h - 1$ with $\beta \equiv 2$. If h = 2, there is no value of β which satisfies Lemma 1, and $c_n \neq 2$. If h > 2, then $3\beta_1 = q - h + 1$ satisfies Lemma 1. Substituting this value in (3), we obtain $3\alpha_2 = r - k - 1$. Then $P_1 = (q - h + 1)$ and $P_2 = (r - k - 1)q + q + r$ with $a_1 = 0$, $a_2 = 1$. But when we set $a_3 + 3\alpha_3q + 3\beta_3r + q = (q - h + 1)$, we obtain $P_3 = 2 + (r - 2k - 1) + (h + 1)r + q$. Moreover, if we let $a_1 = 1$, $a_2 = 2$, partitions P_1 and P_2 exist but also P_4 exists. Thus, there is no n for which $c_n = 2$.

In Table 3 the values for r, q, k, and h are all modulo 3. From an inspection of Table 3 for the cases when max $|c_n| = 1$, we state

Theorem 4: Let $r = (kq \pm 1)/h$, $1 \le h \le (q - 1)/2$. In $F_{3qr}(x)$, $|c_n| \le 1$ if and only if one of these conditions holds: (a) $k \equiv 0$ and $h + q \equiv 0 \pmod{3}$ or (b) $h \equiv 0$ and $k + r \equiv 0 \pmod{3}$.

Table 3
$$r = (kq \pm 1)/h, 1 < h < (q - 1)/2$$

(Values for q, r, h, k are modulo 3)

	k	h	±1	Partit	ions of <i>n</i>	$\max c_n $
	0	1	+	$P_1 = 2 + (q - 2h + 1)r$	$P_2 = (r - 2k - 1)q + q + r$	2
	1	2	+	$P_1 = 2 + (2k + 1)q$	$P_2 = (2h - 1)r + q + r$	2
ц П	2	0	+			1
111	0	2	-			1
r	1	0		$P_1 = 2 + (2h + 1)r$	$P_2 = (2k - 1)q + q + r$	2
	2	1	-	$P_1 = 2 + (r - 2k + 1)q$	$P_2 = (q - 2h - 1)r + q + r$	2

(continued)

				· · · · · · · · · · · · · · · · · · ·				
	k	h	±1	Partitions of n				
	0	2	+	$P_1 = (r - 2k + 1)q$	$P_2 = 2 + (q - 2h - 1)r + q + r$	2		
7	1	0	+			1		
111	2	1	+	$P_1 = (2h + 1)r$	$P_2 = 2 + (2k - 1)q + q + r$	2		
≡ q	0	1	-			1		
я	1	2	-	$P_1 = (2k + 1)q$	$P_2 = 2 + (2k - 1)r + q + r$	2		
	2	0	-	$P_1 = (q - 2h + 1)r$	$P_2 = 2 + (r - 2k - 1)q + q + r$	2		
	0	1	+			1		
≡ 2	1	0	+	$P_3 = 2 + (q - 2h + 1)r + q$	$P_{4} = (r - 2k + 1)q + r$	2		
в	2	2	+	$P_3 = 2 + (2k - 1)q + q$	$P_{4} = (2h - 1)r + r$	2		
<u>-</u>	0	2	-	$P_3 = 2 + (r - 2k - 1)q + q$	$P_{4} = (q - 2h - 1)r + r$	2		
।।। १	1	1	. –	$P_3 = (k - 1)q + q$	$P_{\mu} = 1 + (h - 1)r + r$	2		
	2	0	-			1		
	0	2	+			1		
Ī	1	1	+	$P_3 = 1 + (k - 1)q + q$	$P_4 = (h - 1)r + r$	2		
в		0	+	$P_3 = (r - 2k - 1)q + q$	$P_4 = 2 + (q - 2h - 1)r + r$	2		
2,	0	1	-`	$P_3 = (q - 2h + 1)r + q$	$P_4 = 2 + (r - 2k + 1)q + r$	2		
л Г	1	0	-			· 1		
	2	2	-	$P_3 = (q - 2h + 1)r + q$	$P_4 = 2 + (r - 2k + 1)q + r$	2		

Table 3-continued

REFERENCES

- 1. A. S. Bang, "Om Ligningen $\phi_n(x) = 0$," Nyt Tidsskrift for Mathematic, Vol.
- A. S. Bang, On Lightingen \$\phi_n(w) = 0\$, hyperbasisher \$\phi_p\$ for harmonic terms, for \$6\$ (1895), pp. 6-12.
 M. Beiter, "Magnitude of the Coefficients of the Cyclotomic Polynomial \$F_{pqr}(x)\$," Duke Math. Journal, Vol. 38 (1971), pp. 591-594.
 D. M. Bloom, "On the Coefficients of the Cyclotomic Polynomials," Amer. Math. Monthly, Vol. 75 (1968), pp. 372-377.
