COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL $\boldsymbol{F}_{3 q \boldsymbol{r}}(\boldsymbol{x})$

MARION BEITER
Rosary Hill College, Buffalo, New York 14226

Let F_{m} be the m th cyclotomic polynomial. Bang [1] has shown that for $m=$ $p q r$, a product of three odd primes with $p<q<r$, the coefficients of $F_{m}(x)$ do not exceed $p-1$ in absolute value. The smallest such m is 105 and the coefficient of x^{7} in F_{105} is -2 . It might be assumed that coefficients 2 and/ or -2 occur in every $F_{3 q r}$. This is not so. It is the purpose of this paper to characterize the pairs q, r in $m=3 q r$ such that no coefficient of absolute value 2 can occur in $F_{3 q r}$.

1. PRELIMINARIES

Let $F_{m}(x)=\sum_{n=0}^{\varphi(m)} c_{n} x^{n}$. Then for $m=3 q r, c_{n}$ is determined [1] by the number of partitions of n of the form:

$$
\begin{equation*}
n=a+3 \alpha q+3 \beta r+\gamma q r+\delta_{1} q+\delta_{2} r \tag{1}
\end{equation*}
$$

$0 \leq \alpha<3 ; \alpha, \beta, \gamma$, nonnegative integers; $\delta_{i} \varepsilon\{0,1\}$. If n has no such partition, $c_{n}=0$. Each partition of n in the form (1) contributes +1 to the value of c_{n} if $\delta_{1}=\delta_{2}$, but -1 if $\delta_{1} \neq \delta_{2}$. Because $F_{m}(x)$ is symmetric, we consider only $n \leq \varphi(m) / 2=(q-1)(r-1)$. For $n>(q-1)(r-1), c_{n}=c_{n^{\prime}}$, with $n^{\prime}=\varphi(m)-n$. We note that for $n \leq(q-1)(r-1), \gamma$ in (1) must be zero.

A permissible partition of n is therefore one of these four:

$$
\begin{array}{ll}
P_{1}=\alpha_{1}+3 \alpha_{1} q+3 \beta_{1} r, & P_{2}=\alpha_{2}+3 \alpha_{2} q+3 \beta_{2} r+q+r, \tag{2}\\
P_{3}=\alpha_{3}+3 \alpha_{3} q+3 \beta_{3} r+q, & P_{4}=\alpha_{4}+3 \alpha_{4} q+3 \beta_{4} r+r .
\end{array}
$$

Partitions P_{1} and P_{2} will each contribute +1 to c_{n}, while P_{3} and P_{4} will each contribute -1 . When $n \leq(q-1)(r-1)$, only one partition for each $P_{i}, i=1$, ..., 4, is possible [1].

Lemma 1: For any β_{i} in (2), $3 \beta_{i} \leq q-2$ for all q.
Proof: Following Bloom [3] we have $3 \beta_{i} r \leq(q-1)(r-1)<(q-1) r$. Thus, $3 \beta_{i}<q-1$.

Corollary: $3 \beta_{i} \leq q-3$ for $i=2,4$.
Lemma 2: Either $r+q \equiv 0(\bmod 3)$ or $r-q \equiv 0(\bmod 3)$, for all primes q and r with $3<q<r$.

Prook: Let $q=2 k+1, r=2 k_{1}+1$. Since 3 divides one and only one of the numbers $2 t, 2(t+1)$ when $2 t+1$ is a prime, it follows that 3 divides one and only one of the numbers $r+q=2\left(k+k_{1}+1\right)$ or $r-q=2\left(k-k_{1}\right)$.

2. BOUNDS ON THE COEFFICIENTS

We set $3<q<r$ and make repeated use of the expressions:

$$
\begin{align*}
& P_{2}-P_{1}=\alpha_{2}-\alpha_{1}+3\left(\alpha_{2}-\alpha_{1}\right) q+3\left(\beta_{2}-\beta_{1}\right) r+q+r=0 ; \tag{3}\\
& P_{4}-P_{3}=\alpha_{4}-\alpha_{3}+3\left(\alpha_{4}-\alpha_{3}\right) q+3\left(\beta_{4}-\beta_{3}\right) r+r-q=0 . \tag{4}
\end{align*}
$$

Theorem 1: In $F_{3 q r}(x)$,
(a) if $r-q \equiv 0(\bmod 3)$, then $-1 \leq c_{n} \leq 2$,
(b) if $r+q \equiv 0(\bmod 3)$, then $-2 \leq c_{n} \leq 1$.

Proof of (a) : Assume $c_{n}=-2$ for some n, i.e., partitions of n of forms P_{3} and P_{4} exist. Taking (4), modulo 3, we obtain $\alpha_{4}-\alpha_{3} \equiv 0(\bmod 3)$. But $a<3$, so that $\alpha_{4}=\alpha_{3}$. Now taking (4), modulo q, we obtain [3($\beta_{4}-\beta_{3}$) + 1] $r \equiv 0(\bmod q)$. Then $3\left(\beta_{4}-\beta_{3}\right)+1=\beta q$, for some integer $\beta \neq 0$. Either $3\left(\beta_{4}-\beta_{3}\right)=\beta q-1 \geq q-1$, or $3\left(\beta_{3}-\beta_{4}\right)=|\beta| q+1 \geq q+1$. But $3 \beta_{i} \leq q-2$ by Lemma 1. Therefore, P_{3} and P_{4} cannot both exist and we have $c_{n} \neq-2$.

The proof of (b) follows from a similar argument by considering (3), modulo 3 , and then modulo q.

Remark 1: $F_{3 q r}$ may have a coefficient of 2 or of -2 but not of both.
Remark 2: If q and r are twin primes, $c_{r}=-2$ with $P_{3}=2+q, P_{4}=r$.

3. SPECIAL CASES

Before taking up the general case, we consider $r=k q \pm 1$ and $r=k q \pm 2$. We prove a theorem about $r=k q \pm 1$.

Thearem 2: Let $r=k q \pm 1$. In $F_{3 q r}(x),\left|c_{n}\right| \leq 1$ if and only if $k \equiv 0(\bmod$ $3)$.

Proof: To show the sufficiency of the condition, let $r=3 h q+1$, with $q \equiv 1(\bmod 3)$. Then $r-q \equiv 0(\bmod 3)$, and $c_{n} \neq-2$ by Theorem 1 . We show $c_{n} \neq 2$, i.e., there is no n for which partitions P_{1} and P_{2} can both exist. Taking (3), modulo 3, we obtain $a_{2}-a_{1}=1$ or -2 . We note that $r \equiv 1$ (mod q). Then (3), modulo q, leads to one of the equations:

$$
3\left(\beta_{2}-\beta_{1}\right)=\beta q-2 \text { or } 3\left(\beta_{2}-\beta_{1}\right)=\beta q+1
$$

with $\beta \equiv 2$ (mod 3). Obviously, there is no value of β which satisfies Lemma 1. Hence there is no $n, 0 \leq n \leq(q-1)(r-1)$, for which partitions P_{1} and P_{2} both exist. Similarly, with $q \equiv 2$ (mod 3), it can be shown that there is no n for which partitions P_{3} and P_{4} can both exist. When $r=3 h q-1, r \equiv 2$ (mod
[Aug.
3). If $q \equiv 2$, the proof leads to the same two equations as above with $\beta \equiv 1$. Thus both equations are inconsistent with Lemma 1 . If $q \equiv 1$, the same equations appear with β_{2} and β_{1} replaced by β_{4} and β_{3}, respectively, and $\beta \equiv 2$. Thus $\left|c_{n}\right| \leq 1$.

The necessity of the condition $k \equiv 0(\bmod 3)$ is shown by the counterexamples in Table 1. Values of k are given modulo 3. For each n, other partitions are not possible. We illustrate with the first counterexample, $r=$ $k q+1$ with $k \equiv 1$. The only possible r and q are $r \equiv 2$ and $q \equiv 1(\bmod 3)$. Note that for $n=r, n \equiv 2(\bmod 3)$. Thus in partitions P_{1} or $P_{2}, a_{1}=a_{2}=2$. Then $P_{1}=2+3 \alpha_{1} q+3 \beta_{1} r=r=P_{2}=2+3 \alpha_{2} q+3 \beta_{2} r+q+r$. In neither P_{1} nor P_{2} is it possible to find nonnegative α and β to satisfy the equations. Hence, the coefficient of x^{r} in $F_{3 q r}$ is -2 .

Table $1 \quad r=k q \pm 1$

		Partitions of n		Examples			
(mod 3)	r			c_{n}	q	r	n
1	$k q+1$	$P_{3}=1+(k-1) q+q$	$P_{4}=r$	-2	7	29	29
1	$k q-1$	$P_{3}=(k-1) q+q$	$P_{4}=1+r$	-2	5	19	20
2	$k q+1$	$P_{1}=1+(k+1) q$	$P_{2}=q+r$	2	5	41	46
2	$k q-1$	$P_{1}=(k+1) q$	$P_{2}=1+q+r$	2	7	13	21

Theorem 3: Let $r=k q \pm 2$. In $F_{3 q r}(x),\left|c_{n}\right| \leq 1$ if and only if $k \equiv 0$ and $q \equiv 1(\bmod 3)$.

The proof follows the method in Theorem 2 and is omitted here. Table 2 gives counterexamples to show the necessity.

Table $2 r=k q \pm 2$

		Partitions of n		Examples			
$(\bmod 3)$	r			c_{n}	q	r	n
	$k q+2$	$P_{1}=2+(q+1) r / 2$	$P_{2}=1+(q-1) k q / 2+q+r$	2	5	17	53
$\begin{array}{lll} \text { III } \\ \sigma & 0 & 0 \\ E \end{array}$	$k q-2$	$P_{3}=(q+1) r / 2+q$	$P_{4}=1+(q-1) k q / 2+r$	-2	5	13	44
1	$k q+2$	$P_{3}=(k-1) q+q+2$	$P_{4}=r$	-2	5	37	37
1	kq - 2	$P_{3}=(k-1) q+q$	$P_{4}=r+2$	-2	7	47	49
2	$k q+2$	$P_{1}=(k+1) q+2$	$P_{2}=q+r$	2	7	37	44
2	kq - 2	$P_{1}=(k+1)$	$P_{2}=q+r+2$	2	5	23	30

4. THE GENERAL CASE

More generally, for all primes q and r with $3<q<r$, we have $r=(k q+$ 1) $/ h$, or $r=(k q-1) / h, h \leq(q-1) / 2$. If $h=1$, Theorem 2 applies. Therefore we set $1<h$. In $r=(k q \pm 1) / h$, we may consider $r, q, k, \pm 1$ as four independent variables with h dependent. Since r and q each have two possible values modulo 3 and k has three, there are 24 cases to be examined. We shall examine one of them. Then we shall present Table 3 showing all 24 cases and from the table we form a theorem which states conditions on q and r so that $\left|c_{n}\right| \leq 1$ in $F_{3 q r}$.

First we take $r \equiv q \equiv 1, k \equiv 0(\bmod 3)$ in $r=(k q-1) / h, 1<h \leq(q-1) / 2$. Note that $h \equiv 2$. Since $r-q \equiv 0(\bmod 3), c \neq-2$ by Theorem 1 . We show $c_{n} \neq 2$. Taking (3), modulo 3, we find $\alpha_{2}-\alpha_{1}=-2$ or 1 . Then taking (3), modulo q, we obtain two possible congruences:

$$
-2+\left[3\left(\beta_{2}-\beta_{1}\right)+1\right](-1 / h) \equiv 0 \text { and } 1+\left[3\left(\beta_{2}-\beta_{1}\right)+1\right](-1 / h) \equiv 0
$$

The first leads to the equation $3\left(\beta_{2}-\beta_{1}\right)=\beta q-2 h-1$ with $\beta \equiv 2$. No such value of β will satisfy Lemma 1. The second congruence leads to the equation $3\left(\beta_{2}-\beta_{1}\right)=\beta q+h-1$ with $\beta \equiv 2$. If $h=2$, there is no value of β which satisfies Lemma 1 , and $c_{n} \neq 2$. If $h>2$, then $3 \beta_{1}=q-h+1$ satisfies Lemma 1. Substituting this value in (3), we obtain $3 \alpha_{2}=r-k-1$. Then $P_{1}=$ $(q-h+1)$ and $P_{2}=(r-k-1) q+q+r$ with $a_{1}=0, \alpha_{2}=1$. But when we set $\alpha_{3}+3 \alpha_{3} q+3 \beta_{3} r+q=(q-h+1)$, we obtain $P_{3}=2+(r-2 k-1)+$ $(h+1) r+q$. Moreover, if we let $a_{1}=1, a_{2}=2$, partitions P_{1} and P_{2} exist but also P_{4} exists. Thus, there is no n for which $c_{n}=2$.

In Table 3 the values for r, q, k, and h are all modulo 3. From an inspection of Table 3 for the cases when $\max \left|c_{n}\right|=1$, we state

Theorem 4: Let $r=(k q \pm 1) / h, 1<h \leq(q-1) / 2$. In $F_{3 q r}(x),\left|c_{n}\right| \leq 1$ if and only if one of these conditions holds: (a) $k \equiv 0$ and $h+q \equiv 0$ (mod $3)$ or (b) $h \equiv 0$ and $k+r \equiv 0(\bmod 3)$.

Table $3 r=(k q \pm 1) / h, 1<h<(q-1) / 2$
(Values for q, r, h, k are modulo 3)

	k	h	± 1	Partitions of n		$\max \left\|c_{n}\right\|$
	0	1	+	$P_{1}=2+(q-2 h+1) r$	$P_{2}=(r-2 k-1) q+q+r$	2
-	1	2	+	$P_{1}=2+(2 k+1) q$	$P_{2}=(2 h-1) r+q+r$	2
III	2	0	+		1	
σ	0	2	-		1	
I_{1}	1	0	-	$P_{1}=2+(2 h+1) r$	$P_{2}=(2 k-1) q+q+r$	2
	2	1	-	$P_{1}=2+(r-2 k+1) q$	$P_{2}=(q-2 h-1) r+q+r$	2

Table 3-continued

	k	h	± 1	Partitions of n		$\max \left\|c_{n}\right\|$
$\begin{gathered} N \\ \prime \prime \prime \\ \sigma \\ \prime \prime \prime \\ \varepsilon_{1} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	2 0 1 1 2 0		$\begin{aligned} & P_{1}=(r-2 k+1) q \\ & P_{1}=(2 h+1) r \\ & P_{1}=(2 k+1) q \\ & P_{1}=(q-2 h+1) r \end{aligned}$	$\begin{aligned} & P_{2}=2+(q-2 h-1) r+q+r \\ & P_{2}=2+(2 k-1) q+q+r \\ & P_{2}=2+(2 k-1) r+q+r \\ & P_{2}=2+(r-2 k-1) q+q+r \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
$\begin{gathered} N \\ \text { III } \\ \sigma \\ - \\ - \\ \text { III } \\ \& \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	1 0 2 2 1 0		$\begin{aligned} & P_{3}=2+(q-2 h+1) r+q \\ & P_{3}=2+(2 k-1) q+q \\ & P_{3}=2+(r-2 k-1) q+q \\ & P_{3}=(k-1) q+q \end{aligned}$	$\begin{aligned} & P_{4}=(r-2 k+1) q+r \\ & P_{4}=(2 h-1) r+r \\ & P_{4}=(q-2 h-1) r+r \\ & P_{4}=1+(h-1) r+r \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$
$\begin{gathered} - \\ 11 \prime \\ \sigma \\ \sim \\ \sim \\ 11 \prime \\ \varepsilon_{1} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 2 \end{aligned}$	2 1 0 1 0 2	+ + +	$\begin{aligned} & P_{3}=1+(k-1) q+q \\ & P_{3}=(r-2 k-1) q+q \\ & P_{3}=(q-2 h+1) r+q \\ & P_{3}=(q-2 h+1) r+q \end{aligned}$	$\begin{aligned} & P_{4}=(h-1) r+r \\ & P_{4}=2+(q-2 h-1) r+r \\ & P_{4}=2+(r-2 k+1) q+r \\ & P_{4}=2+(r-2 k+1) q+r \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$

REFERENCES

1. A. S. Bang, "Om Ligningen $\phi_{n}(x)=0, "$ Nyt Tidsskrift for Mathematic, Vol. 6 (1895), pp. 6-12.
2. M. Beiter, "Magnitude of the Coefficients of the Cyclotomic Polynomial $F_{p q r}(x), "$ Duke Math. Journal, Vol. 38 (1971), pp. 591-594.
3. D. M. Bloom, "On the Coefficients of the Cyclotomic Polynomials," Amer. Math. Monthly, Vol. 75 (1968), pp. 372-377.
