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0. INTRODUCTION 

By an invariant of a mathematical structure—a matrix, an equation, a field 
—we usually understand a relation, or a formula emerging from that structure 
—which remains unaltered if certain operations are performed on this struc-
ture. An invariant is, so to speak, the calling card of some mathematical 
pattern, it is a fixed focus around which the infinite elements of this pat-
tern revolves. Matrices, the general quadratic, and many other mathematical 
configurations have their invariants. So do groups, if they are not simple. 
A prima donna invariant is the class number of algebraic number fields. She 
is far from having been unveiled. Some serenades have been sung to her from 
the quadratic, and to a much lesser extent, the cubic fields. Higher fields 
are absolutely taboo for their class number, and will probably remain so for 
many decades to come. With certain restrictions, also the set of fundamental 
units of an algebraic number field is an invariant. 

This paper states a new invariant for all cubic fields. In a further paper 
a similar invariant will be stated for all algebraic number fields of any 
degree. Here the cubic case is singled out, and completely solved, since the 
technique, used in this paper, will carry over, step by step, to the general 
case. We shall outline the idea of this new invariant, as obtained here in 
the cubic case. Let e be any unit (not necessarily a fundamental one) of a 
cubic number field. Since e and e~l are of third degree, both can be used as 
bases for the field. This must not be a minimal basis, so that we can put 

ev = xv +yve + zve2
3 xv>, yv, zv e 2, v = 0, 1, ..., e"° = vv +sve'1 +tve'2. 

xv and rv are then calculated explicitly as arithmetic functions of V. From 
ev . e-v _ 2_9 we obtain the combinatorial identity 

_ 2 

and this is an invariant, regardless of how the cubic field and one of its 
units is chosen. We also obtain a second invariant, viz., 

_ 2 

Few invariants can please better the heart of a mathematician. 

354 
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1. POWERS OF UNITS 
Let 

F(x) = x3 + QXX2 + o2x + a3; al9 o2> o3 e U (1.1) 

be an irreducible polynomial in x over 7L of negative discriminant, having one 
real root W, and one pair of conjugate roots. By Dirichletfs theorem, Q(w) 
has exactly one fundamental unit e9 viz., 

e = r1 + r2w + v3w2\ rl9 P2, P 3 e Q. 

Of course, e is a third-degree algebraic irrational. Since 

0 = w3 + c ^ 2 + c2w + £3, 

we find the field equation of e by the known method 

e = vx + P 2 W + P3ZI;2 , 

&;£ = P / + P2'W + r3
rw2, ( P / , P 2 ' , P3 ' e §) 

w2g = r[r + r£'w + P^ 'W 2 , ( P " , v'2\ rr
3

r e Q) 

and o b t a i n 
e3 - a, e2 - a0e - a = 0 , 

(1 .2 ) 
z x , a2 , a3 e S , a3 = ± 1 . 

Here we i n v e s t i g a t e , w . e . g . , t h e case a 3 = 1 , hence 

e3 - a1e2 - a2e - 1 = 0 
(1.2a) 

e3 = 1 + a2e + a1e2; d\, a2 ̂  0, by presumption. 

Our further aim is to obtain explicit expressions for the positive and nega-
tive powers of 0. To achieve this, we take refuge to a very convenient trick 
which makes the calculations uncomparably easier. We use as a basis for Q(w) 
the triples 1, e, e2 and 1, e~l, e'2; the question whether these are minimal 
bases is not relevant here. We put 

ev = xv + yve + zve2; xv, yv9 zv e TL\ v = 0,1,..., (1.3) 

x0 = 1, xx = x2 - 0. (1.3a) 

We o b t a i n from ( 1 . 3 ) , m u l t i p l y i n g by e9 and w i t h (1 .2a ) 

ev+1 = xve + yve2 + zv(l + a2e + ale2) 

= zv + (xv + a2zv)e + (yv + axzv)e2 

2 
~ xv +1 + \)v + \ e + Zv + le s 
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Hence3 by comparison of coefficients, 

xv + 1 ~ 2y» 

2/u +1 = xv + a2Sz?J 

su+i = y v + a1zv. 

Thus5 we obtain 

s, = a:„+1 (1.4) 

ey = xv + (xv_x + 0,^)0 + xu + 1e2 

**V+2 == ̂ V - 1 "*" &2XV "*" ̂ 1*^1;+1? 

^u+3 = xv + a2xu+i + ai^v+2; (y = °> !» • • • ) • (1.4a) 

Formula (1.4a) is the recurrence relation which will enable us to calculate 
explicitly xV9 and with it ev. We set 

2 . %vuv = xQ + x^u + x2u2 + / j xvuv, 
V=0 U = 3 

and5 with the initial values from (1.3a), 

y=0 V=3 y=0 

Substituting on the right side the value of x from (1.4a) [and taking into 
account (1.3a)], we obtain 

^\yW y = 1 + 22, (xv + a2^y +1 + ^ i ^ y + 2 ) ^ u + 3 

u=0 v= 0 

= 1 + u3/.xvuV + o,2u2y^xv + iUv+1 •+ a1wV^^y + 2wy 

y = 0 y = 0 

= 1 + ^ 3 / ^ ^ ^ + a2u2 /^jT^w1' \ - #0 + axu j y_]xvuV | ~ ô " ^iw 

= 1 + (w3 + a2u2 4- a^u)2_,x
v

uV " a 2^ 2 " d^w. 
v = 0 

We have thus obtained 
00 

(1 - axw - a2u2 - uZ)/_\XvUV = ! " aiu " a2^2 • (1.4c) 
y = 0 

Since u is an indeterminate, and can assume any value, we choose 

1 - axu - a2u2 - u3 ̂  0, (1.4d) 
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and obtain from (1.4c) and (1.4d) 

t 1 - .axu - a2u 
x„W 

v = o 1 - axu - a2u - u£ 

Y^xy = i + 
1 - axu - a2u2 - u3 

4,-^lA, ~ U_2 

and from (1.4b) 

00 00 

v=0 v=0 

OO o 

E V + 3 _ U_ 
Xv+3U > 

V = Q 1 - axu - a2u - u 

and since u ^ 0, 

XX+3^y = — — • 
v = o 1 - u(ax + a2u + u ) 

Choosing, additionally to (1.4d), 

0 < \u(a1 + a2u + u1)\ < 1, 

we obtain, from (1.4d) 

1 - a,u - a0w - u 

(1.4e) 

(1.5) 

To calculate iĉ  explicitly, we shall compare the coefficients of um {m~ 0, 1, 
. ..) on each side of (1.5). On the left, this equals to xm + 3. On the right 
side we investigate 

Y^Um~i{Cil + a2U + U1)™-1 = 

T V " * Y ( m ~ l \ay
1Ha2u)!hu 

(1.5a) 

»1 " »2 ^3 

Since we demand that the element u have the exponent m9 we obtain 

m-i+y2-\-2y3=rn. 

y 2 + 2z/3 = i9 (1.5b) 
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y2 = i - 22/3, (1 .5c ) 
and 

2/i + 2/2
 + 2/3 = m ~ l (1 .5d) 

y i e l d 
z/x = TTZ - i - i + 2z/3 - 2/3, 

y1 = m - 2i + y$. (1 .5e ) 

We further have 

/ m - i \ (m - i ) ! _ (m - i ) ! 
\2/i> 2/2*2/3/ 2/i^2/2!2/3! (w? - 2 i + 2/3) ! ( i - 2 2 / 3 ) ^ 3 ! 

(m - i ) ! (i - 2/3)! 
= ( i - 2/3)!(ra - 2^ + 1/3)! (2/ - 2z/3)!2/3! 

\i - 2/3/v 2/3 / ' 

/ m - * \ Im- i \ / i -ys\ 
\2 / i>2/ 2 >2/ 3 / V " 2 / 3 / \ 2/3 / 

Writing j for i/3, we thus obtain 

^+3=Ei:(-:5)C;-J>""+^"2J'- (1-5s) 

We shall determine the upper bounds of £ and j. From the binomial coeffi-

cient ( . J, we obtain 

A <r A —A 0 A s A A ^ 

2 
J <. i - J, 2j <_ i , j <. y; (1.5h) 

From the binomial coefficient ( . . 1, we obtain 

U - or 

m - i >_ i - j , TW - 2% >_ - j , 

and from ( 1 . 5 h ) , - j 2 l -y> so t h a t 
i, 3 2 

m - 2i '>_ - y , tfz >. y i , £ <. T-W. ( 1 . 5 i ) 

From (1.5h) and (1.5i), we have thus obtained 

hence, 
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m m *.•» = £ E(*:}XV>r«* iai-1* ; {m = 0, 1, (1.6) 
t = Q J = 0 

We shall verify formula (1.6) which does not lack harmony in its simple 
structure. From (1.3a) and (1.4a), we obtain, for V = 0, 1, ..., 

# 3 = 1 , 

X^ = <2. , 

X5 = a2 + al> 

x6 = 1 + 2axa2 + 

From (1.6), we obtain, for m = 0, 1, 2, 3, 

z3. 

0, x3 = 1, since i, 
» • ( 0/ 

77? = 1; i = j = 0, xh = ax; 

w = 2; i = 0, j = 0; i = 1, j = 0, xs =• a\ + a2\ 

m = 3; i = 0, j = 0; i = 1, j = 0; i = 2, j = 1, x6 = al + 2a2a2 + 1 

We shall proceed to calculate the negative powers of e9 and put 

e~v = rv + sve~l + tve~2. 

For the initial values, we obtain again 

(1.7) 

V 0, 1, 2; r0 = 1; PX 0. 

For the field equation of e l , we obtain, from (1.2a), 

a, e a2£ 2; al5 a2 ^ 0. 

(1.8) 

(1.9) 

If we compare (1.9) with (1.2a), we see that the recursion formula for e'v , 
with the same initial values for V = 0, 1, 2, is the same as that for ev

9 sub-
stituting only -a1 for a2 and -a2 for al; hence we obtain, in complete anal-
ogy with (1.4), (1.4a), and (1.6), 

sv = rv_x - axrv9 

(1.9a) 

<VW2 
[f1] [^] 

+3 = J E ( r f / h ) m - 2 " w ^ ^ = 0 j = 0 
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S IS 
m j _ j/m _ -7 \ /-? _ --f\ • « . « • . • 

(m = 0 , 1, . . . ) . (1.9b) 
.-" \ £• — .// \ ./ / 

t = 0 J • 

m m 

Formulas (1.6) and (1.9b) are our main tools in establishing new identities 
of combinatorial structures. Both xm and vm are arithmetic functions, and we 
shall show that there exist simple relations between them. 

2. TRUNCATED FIELD EQUATIONS OF UNITS 

We shall now drop the restriction (1.2a), viz., al,a1iz 0, and investigate 
the cases when either a1 or a2 equal zero. We shall start with 

a2 = 0, e3 = 1 + axe2; ax + 0. (2.1) 

(e a cubic unit; al e Z) 

Formulas (1.9) take the form, setting 

ev = xv + yve + zve2 (v = 0, 1, ...; xV9 yv , zv e 7L) (2.2) 

yv = xv_x, 

sy = ̂ V + 1 ) (z.za) 

ey = ̂  + a ^ e + xv + le2, (v = 1, 2, ...) 

and (1.4a) becomes 

^y + 2 = ^y + a i ^ + 3» (#0 = 1 > ^ 1 = X2 = °  5 y = ° ' 1» • • • ) • ^2'3) 

To calculate xv explicitly from (2.3), there is no need to go through the 
whole process of using Euler's generating functions. Instead, we can proceed 
straight to formula (1.5a). Here we shall then keep in mind though, that the 
condition a2 - 0 results in y2

 = 0> and we obtain 

Xy-'K + u )"-* = J^-'^f72 ". ^aT^W . (2.4) 
i = 0 i=0 j- = 0 \ <7 / 

Since we are looking for powers um, we obtain 

m - i + 2 j = m, 

i = 2j; (2.4a) 

since, from the binomial coefficient on the right side of (2.4), 

m - i >_ j, m - 2j >_ j, j <. j (2.4b) 

and formula (1.6) takes here the final form, 
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[f] 
••-£("-/>? m-3j 0, 1, ... . (2.5) 

j =o 

Instead of proceeding to calculate the negative powers of e for the case 
a2 = 0 from e3 = 1 + a^ 2, we shall first calculate the positive powers of e 
for the case a1 = 0. The reasons for this will become clear in the sequel. 
We set again 

%v ~*~ 2/y^ •" ̂ y ^ s «^0 ~" 1> *^l ~ *^2 0 

I e 3 = l + a 2 e ; z/y = xv.l+a2xv; zv = xv + 1; x3 + v = xv+a2xv + l; a2 + 0 . 

(1 .5 ) now t a k e s t he form 

(2 .6 ) 

Y^xv+3uv = ]C u 2 J * (°>2 + ̂ )j'» (2.6a) 
j=o 

It is convenient to calculate x0m,0 and #„ ,, separately because of the fac-
tor w J under the second sigma sign. Because of the factor u 3 , we shall 
calculate separately the coefficients of u2m (v = 2m) and u2m +1 (v = 2m +1). 
We obtain, after easy calculations, 

[f] 
X2.m + 3 Z-J \ 2i ) 

,m-3i (m = 0, 1, ...) 

LVl (2.6b) 

(x, = 0). 

We can now easily calculate the negative powers for ev in the cases ax = 0, 
and a2 = 0. In the case ax = 0, we obtain, from (2.6) 

rv + sve x + t„e~ 

1 - a0e'2, 
(2.7) 

and from (2.2a), 

and from (2.5). 

rv + vv-ie~l + rv+ie~ (2.7a) 

[f] 
w3 = z(m"/0(-^ 

J = 0 

m - 3 j 
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.[« 
rv + 3 - E f }2J')("1)B,"^"3J» ̂ ^ °» ̂  ••' " ^ ^ 

J=0 

In the case of a2 = 0} we obtain, from (2.1), 

and from ( 2 . 6 ) , 

e~z = 1 - a ^ " 1 , 

e" y = vv + (rv_x - a ^ e " 1 + p y + 1 e ' 2 , 

and from (2 .6b) 

[ f ] 
r2 m + 3 = E(m2i l) ( _ a i : \m - 3i (m = 0 , 1 , . . . ) 

(2.7c) 

tf: 
2m + 3 J2 (-l)m'i^~i'Cym

l-H , (m = 0, 1, . . . ) (2.7d) 

[*£*] 
2m+if 

£ (>l)--i^-+^a-3-i5 ( O T . x> 2 , . . . ) . (2.7e) 

3. COMBINATORIAL IDENTITIES 

In this section, we shall establish the new combinatorial identities, by 
means of the powers of the units which we have stated explicitly in §1. We 
shall enumerate the main results we have obtained there in order to save the 
reader unnecessary backpaging. 

e3 = 1 + a2e + axe2; al, a2 + 0 (by presumption); 

ev = xv + y e + zve2\ xv, yv , zv , a19 a2 £ H; 

%V+3 ~ &v ^2XV ^lXv ' *^0 = ' *^1 ~ ^2 ~ ' 

e~v = vv + s y e _ 1 + £ y £ - 2 ; py , sV9 tv e 7L\ 

sv = vv _ Y - a1rv ; tv = ry + 1 ; 
Pv+3 Py " a i P y + l ~ a2Py + 2 ' P0 = ' VI = V2 ~ ' 

(3.1) 

From the last equation of (3.1), multiplying both sides first by e , then by 
e~l, we obtain 
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e - -a2 - aYe + e , 
e~2 = -a2(-a2 - axe + e2) - al + e, 

e"1 = -a2 - axe + e2; e = a\ - a1(a1a2 + l)e - a2e2. 

We now obtain, from (3.1) and (3.2), 

1 = e
ve'v =. (xv + yve + zve2) (vv + sve'1 + tve'2) 

= xv?v +' 2/ySy + Sy^y + (Vvrv + s
ySy)£ + ^v^v^ 

+ (jjyS,, + yvtv)e~l + ^ t j g - 2 

= x y p y + yvsv + s y £ y + (z/ypy + 3 y s y ) e + s y r y e 2 

+ (xvsv + yvtv)(-a2 - axe + e 2 ) 

+ [ a 2 - al + ( a x a 2 + l ) e - a 2 e 2 ] # y £ y . 

(3.2) 

(3 .2a ) 

1 = xvrv + (2/y " aixv)sv + [ ^ + (a2 - a>l)xv - a2yv]tv 

+ (yvrv + (zv - alxv)sv + [{ala2 + l)xv - a1yv]tv
>je (3 .2b) 

+ {(*vrv + xv$v + 0/y - a2xv)tv)e2. 

Comparing i n (3 .2b) c o e f f i c i e n t s of equa l powers of e on bo th s i d e s , and r e -
minding t h a t e i s a c u b i c i r r a t i o n a l , we o b t a i n t h e system of t h r e e l i n e a r 
e q u a t i o n s i n the t h r e e i n d e t e r m i n a t e s vv , sV9 and tV9 

( xvrv + (yv - a2xv)sv + [zv + (a2 - ax)xv - a2yv]tv = 1 , 

yvrv + (zv - axxv)sv + [(a1a2 + l)arv - ^ Z / J T ^ = 0 , 

{ zvrv + xvsv + (2/y - a 2 ; r y ) t y = 0 . 

(3.3) 

Adding to the first equation of (3.3) the a2 multiple of the third one, we 
obtain, adding also to the second the al multiple of the third, 

(xv + a2zv)rv + yvsv + (zv - axxv)tv = 1, 

Q/ti + aiZv^rv + ZvSv + Xvtv = 0, 

syry + xvsv + (z/y - a2*y)ty = 0. 

(3.3a) 

Since the indeterminates rv , sy , £y are to be expressed by xv9 yv , sy , we 
calculate the determinant A y + 2 of the system (3.3a), viz., 

x„ + a0z l^v 

yv + axzv zv 

Z TI Xn, 

zv - &ix
v 

xn Jv 

*2 v 

A U + : (3.3b) 

Why this determinant has the index V + 2, and not V, as would seem proper, 
will be understood, and justified, soon. 
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We have, for the first row of the determinant (3.3b) from (3.1), and simi-
larly for the second and third 

Xv + aiZv ~~ Xv + a 2 ^ u + l » 

yv 
xv - 1 &2xv J ( 3 . 3 c ) 

"V +1 Cv-2 + a
2
XV-l' 

With (3.3c), (3.3b) becomes 

Ay +2 

#y + a2Xy + x 

^y+2 

#y +1 

xv - 1 "1" a2Xv 

^y +1 

*£y 

^y-2 + a 2^y-2 

*£y 

#y -1 

(3.3d) 

The third row of (3.3d) is obtained from (3.1) as follows: 

2 y ~ xv+l9 }JV ~ &2Xv = Xv-1 ~*~ a2Xv ~" a2Xv = Xv-l> 

the first entry of the second row is obtained as follows: 

ljv + CL]XV — x
v - \ "•" dixv "*" ^ l ^ y + l = Xv+2' 

Subtracting in the determinant of (3.3d) from the first row the a2-multiple 
of the third row, we obtain 

JV + 2 JV + 1 

X7) _ i 

(3.3e) 

Interchanging in (3.3e) the first row with the second, and then the second 
with the third, we finally obtain 

A
v + 2 

Xv +2 

XV + 1 

xv 

X-IJ 

xv 

x v - l 

XV-2 

(3.3f) 

Substituting for the entries of the first row of (3.3f) the value from (3.1), 
viz*, 

xk + 3 = xk + a2xk + l + alxk + 2> ^ = k + 2, V + 1, V) 

Ay+2 

XV - 1 +a2Xv ~*~aiXv + 1 x y - 2 + a 2 5 : i > - 1 + a i ^ y ^ u - 3 "*" a 2 ^ f - 2 ~*~ aiXv ~ 1 

*Ey + 1 

XV 

xv _1 
#y-2 

. (3.3g) 

Subtracting in (3.3g) from the first row the a1 -multiple of the second, and 
the a2-multiple of the third, we obtain 
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A*+ 2 xv +1 

X,, uy -1 

xv - 3 

#y - 1 

^y -2 

(3.3h) 

Interchanging in (3.3h) the first row with the second, and then the second 
with the third, we obtain 

A, + 2 = 
^v ^v-1 

Xv_ i Xv„2 

Zv - 1 *̂ y -2 ^y - 3 I 

From (3.3f) and (3.3i) we obtain the important result 

Ay + 2 = A y + i = Ak; (fc = 5, 6, . . . ) . 

(3.3i) 

(3.4) 

Taking in (3.4) k = 5, and reminding, from (.3.1), that x3 = 1, x1 = x2 = 0, 
we obtain 

Al>+2 = 

A „ + 2 = -1. 

* 5 

** 
1 

xh 

1 
0 

1 

0 

0 
- 1 , 

(3.4a) 

With (3.4a) we have finally calculated the determinant of the system of equa-
tions (3.3a). By Cramer?s rule we now obtain from (3.3a) and (3.4a), 

yv a^Xy 
(3.5) 

S u b s t i t u t i n g in ( 3 . 5 ) , 

zv = xv + j , yv = xv _ 1 + cc^Xy , 

we o b t a i n 

Z*v = xv " xv - lxv + 15 \V ~ 1 > ^ J . . . ) . (3.6) 

(3.6) is the desired combinatorial identity. Its full beauty will be appre-
ciated when we substitute the values for rv and xv. Its simple structure in 
the form (3.6) is really astonishing. We must explain its remarkable origin. 
The reason for this harmoniousness is the fact that we have chosen to manipu-
late with the powers of a unit e in Q(w) and a basis of the powers of e as 
the basis of Q(w). For only this leads to the determinant A y + 2 ° f tne system 
of equations (3.3a) equal to ±1. Had we chosen any other cubic irrational a 
in Q(w) , then the identity av • a~v = 1 would have led to a system of equa-
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tions whose determinant is generally different from ±1. Formula (3.6) is 
therefore, in a certain sense, an invariant of any cubic field Q(w), vead of 
aVL the cubic fields. The surprising explanation for this is the relation-
ship 

A.„ + 2 = ®(ev) = (®(e))V = ±1; (v = 0, 1, . . . ) . (3.7) 

We shall prove (3.7). We obtain, denoting 

a = ev = xv + yve + zve2; e3 = 1 + a2e + axe2; 

ae = xve + yve2 + zv(l + a2e + axe2), 

ae = zv + (xv + a2zv)e + (yv + axzv)e2
9 

ae2 = yv + a ^ + [ a ^ + (axa2 + l)zv]e + [#„ + a ^ + (a2 + a 2 ) s y ] e 2 . 

We thus obtain 

N(a) 

(-1)' «/k oj l" CLO *"•* 7• % + <*!*„ 
t/„ + axzv a2yv + (a1a2 + l)su xv + axyv + (a\ + a2)zv 

(3.7a) 

Subtracting in the determinant (3.7a) from the third row the ̂ -multiple of 
the second row, we obtain 

N(ev) 
yv 

yv + ai*v 

\yv
 a2yv - aixv + zv xv + a2*v\ 

and subtracting from the second column the a2-multiple of the first column, 

\xv y^ a2xv zv 

N(ev) = -\zv xv yv + axzv 

\yv
 zv - aixv xv + aizv 

Comparing (3.3b) with (3.7b), we obtain 

N(ev) = Ay + 2 = 1. 

Had we chosen any a £ Q(w), formula (3.6) would take the form 

N(a)rv= x2
v - xv_lxv + l9 

(3.7b) 

(3.7c) 

(3.7d) 

where rv and xv have similar meanings as before, our invariant (3.6) would be 
dependent on a. The corresponding combinatorial identity would be deprived 
of its beautiful structure. But, of course, in such a way we can obtain 
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infinitely many combinatorial identities (3. 7d) for any cubic irrational in 
Q(w). Of course, every time 1, a, a2 and 15 a"1, a"2 are to be taken as bases 
for Q(w). 

Now, returning to the powers ev and e~v in the general cubic cases, the 
reader will understand that, in principle, there is no structural difference 
if, in the system of linear equations (3.3a), we take xv , yv9 zv as indeter-
minates and rv , sy, tv as coefficients. Carrying out the same calculations, 
we would then arrive at a formula, completely analogous to (3.6), viz., 

*V-i*Wi; (v = !> 2> • • • ) . (3.8) 

We shall verify (3.8) for a few values of V. We calculate from (3.1), viz., 

V + 3 i, ^ a 2 ^ + 2 ; P 0 

0; 
0. 

a2 + a^; xe = 1 + 2aja2 + a\. 

-ax + ax; r6 1 + 2alaz 

a\ - l(-a1 + a\) 

Xs = r 2 _ j , ^ 

a2 + a\ = (-ax + a|) - (-a2)(1 + 2axa2 - a2) 

= a? 2axa2 + a^ + a2 + 2a2a2 

It exposes the complicated structure of formulas (3.6) and (3.8), if we write 
out in full these combinatorial identities and substitute the corresponding 
values for xv and rv We obtain from (1.6) and (1.9b) 

= xm + l ~ ^ + 2 ^ + 4 ' (.777 = U , I , . . . ) 

ffl [*] . . . 
E £<-i>"~'~'(!TS)(V)a{"2'ar"+i 

* - 2 j 

£ = 0 7̂ = 0 

E EC 
£ = 0 j = 0 

777 - 1 - ^ 

i - 0 'X ' ; •>?" - l - 2 £ + J £ - 2 j 

E ECwTrK""^ • 2 j 

(3.9) 

; axa2 ^ 0. 
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(3 .9 ) i l l u s t r a t e s t h e c o m p l i c i t y of t h e s e c o m b i n a t o r i a l i d e n t i t i e s , and i t 
would be a c h a l l e n g i n g problem t o p rove i t by " e l emen ta ry" means . In t h e 
same way, we o b t a i n 

xm + 3 = rm + 3 - rm+2rm+lt, (m = 0 , 1 , . . . ) 

M { 
i-2j 

mi=0 3=0 
ty.u-i-'Q- ffiyy^ia;-"" 

g ^( - l ) -*- ' - 1 ^ l i ~- *)(* -• ^aY^aT^^ 
t = 0 J =0 

[̂ ffl , - + 1 V / . -x 
i - 0 j = 0 

(3 .10) 

; ala1 f 0. 

Now l e t 

e3 = 1 + a2e, a2 ^ 0, 

°2m 

rmi 
,m- 3t 
2 9 

m-3i-1 
2 : 

l ) f f l " j a r 3 j , 7w = 0 , 1 , 

(3 .11) 

We have 

P 2 y + 3 ^ 2 y + 3 X 2 y + 2 ^ 2 y + 4 3 (3.12) 

and substituting in (3.12) the values of (3.11), we obtain 
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m 

-> • Y 

fefl feel 

(3.13) 

v^ (m - 1 - i\ m-2-n *S (m-i\m-3i-i , _ 7 , . 
L \ 2i + 1 ) a 2 LJ \li + l)a2 , (m - 2, 3, . . . ) • 

Special cases of (3.11) were investigated by the author in two previous papers 
[1] and [2], and by L. Carlitz [3] and [4]. 

The case a1 ^ 0, a2 = 0 is treated analogously. 
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