# SIMPLIFIED PROOF OF A GREATEST INTEGER FUNCTION THEOREM 

## J. L. BROWN, JR.

 The Pennsylvania State University, University Park, PA 16802The purpose of this paper is to give a simple proof of a result, due originally to Anaya and Crump [1], involving the greatest integer function [•]. In the following, $a=\frac{1+\sqrt{5}}{2} \doteq 1.618, b=\frac{1-\sqrt{5}}{2} \doteq-0.618$, and $F_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}$ defines the $n$th Fibonacci number for $n \geq 1$.

Definition: Let $\delta$ be defined by $\delta=\frac{1}{2}-\frac{b^{2}}{\sqrt{5}}>0$.
Lemma 1: For $n \geq 2, \delta \leq \frac{1}{2} \pm \frac{b^{n}}{\sqrt{5}}$.
Proo6: Equivalent to $\frac{-b^{2}}{\sqrt{5}} \leq \frac{ \pm b^{n}}{\sqrt{5}}$ or $\pm b^{n} \leq b^{2}$, which is clearly true for $n \geq 2$, since $|b|<1$.

Lemma 2: For $n \geq 2$ and any $\gamma$ satisfying $|\gamma|<\delta$,

$$
\left[\frac{a^{n}}{\sqrt{5}}+\gamma+\frac{1}{2}\right]=F_{n}
$$

Proof: We must show $F_{n}<\frac{a^{n}}{\sqrt{5}}+\gamma+\frac{1}{2}<F_{n}+1$, or using $F_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}$ and $-|\gamma| \leq \gamma \leq|\gamma|$, the required inequality will be true if

$$
\frac{-b^{n}}{\sqrt{5}} \leq-|\gamma|+\frac{1}{2} \leq|\gamma|+\frac{1}{2}<\frac{-b^{n}}{\sqrt{5}}+1 .
$$

The extreme left and right inequalities reduce to $|\gamma| \leq \frac{1}{2}+\frac{b^{n}}{\sqrt{5}}$ and $|\gamma|<\frac{1}{2}-\frac{b^{n}}{\sqrt{5}}$, respectively, both valid for $|\gamma|<\delta$ by Lemma 1.

Theorem 1: (Cf. [1]): For $n \geq 1$ and $1 \leq k<n,\left[a^{k} F_{n}+\frac{1}{2}\right]=F_{n+k}$.
Proof: $\left[a^{k} F_{n}+\frac{1}{2}\right]=\left[\frac{a^{k}\left(a^{n}-b^{n}\right)}{\sqrt{5}}+\frac{1}{2}\right]=\left[\frac{a^{k+n}}{\sqrt{5}}-\frac{(-1)^{k} b^{n-k}}{\sqrt{5}}+\frac{1}{2}\right]$ (using $a b=-1)=F_{n+k}$ by Lemma 2 since $\left|\frac{(-1)^{k+1} b^{n-k}}{\sqrt{5}}\right| \leq \frac{|b|}{\sqrt{5}}<\delta$.

Corollary 1: ([2], pp. 34-35): $F_{n+1}=\left[a F_{n}+\frac{1}{2}\right]$ for $n=2,3,4, \ldots$
Proof: Take $k=1$ in the theorem and note $1=k<n$ for $n=2,3,4, \ldots$
[Aug.

Corollary 2: (Cf. [3], p. 22): $\left[\frac{a^{n}}{\sqrt{5}}+\frac{1}{2}\right]=F_{n}$ for all $n \geq 1$.
Proof: Clearly true for $n=1$, since $a \doteq 1.618$. For $n \geq 2$, the result follows from Lemma 2 with $\gamma=0$.

Note: The case $k=n$ is not treated in Theorem 1 , and in fact the result of the theorem fails for $n \geq 1,1 \leq k \leq n$ when $n=1$ and $k=1$, since

$$
\left[a F_{1}+\frac{1}{2}\right]=\left[a+\frac{1}{2}\right]=[2.118]=2 \neq F_{2}=1
$$

(thus the statement of the theorem in [1] requires modification). However, we can easily prove the following:

Theorem 2: Let $n \geq 2$ and $k=n$. Then $\left[a^{n} F_{n}+\frac{1}{2}\right]=F_{2 n}$.
Proof: $\left[a^{n} F_{n}+\frac{1}{2}\right]=\left[\frac{a^{n}}{\sqrt{5}}\left(a^{n}-b^{n}\right)+\frac{1}{2}\right]=\left[\frac{a^{2 n}}{\sqrt{5}}-\frac{(-1)^{n}}{\sqrt{5}}+\frac{1}{2}\right]=\left[\frac{a^{2 n}}{\sqrt{5}} \pm \frac{1}{\sqrt{5}}+\frac{1}{2}\right]$
which will be $F_{2 n}\left(\right.$ since $\frac{a^{2 n}}{\sqrt{5}}>F_{2 n}$ and $\left.\pm \frac{1}{\sqrt{5}}+\frac{1}{2}>0\right)$ if $\frac{a^{2 n}}{\sqrt{5}} \pm \frac{1}{\sqrt{5}}+\frac{1}{2}<F_{2 n}+1$ or $\frac{-1}{2} \pm \frac{1}{\sqrt{5}}<\frac{-b^{2 n}}{\sqrt{5}}$, an inequality which is easily verified for $n \geq 2$.

With both $n$ and $k$ unrestricted positive integers, we can also state two simple inequalities which depend on the fact that [•] is a nondecreasing function of its argument.

## Corollary 3:

(i) For $n$ even, $\left[\alpha^{k} F_{n}+\frac{1}{2}\right] \leq F_{n+k} \quad(n \geq 1, k \geq 1)$
(ii) For $n$ odd, $\left[a^{k} F_{n}+\frac{1}{2}\right] \geq F_{n+k} \quad(n \geq 1, k \geq 1)$.

Proof:
(i) With $n$ even, $\frac{a^{n}}{\sqrt{5}}>F_{n}$ and $\left[a^{k} F_{n}+\frac{1}{2}\right] \leq\left[\frac{a^{k+n}}{\sqrt{5}}+\frac{1}{2}\right]=F_{n+k}$ by Cor. 2.
(ii) Similarly, $n$ odd implies $\frac{a^{n}}{\sqrt{5}}<F_{n}$ and $\left[a^{k} F_{n}+\frac{1}{2}\right] \geq\left[\frac{a^{k+n}}{\sqrt{5}}+\frac{1}{2}\right]=F_{n+k}$ again by application of Cor. 2 .

We may also obtain a similar result on Lucas numbers due to Carlitz [4] by an analogous approach (recall $L_{n}=a^{n}+b^{n}$ for $n \geq 1$ ).

Lemma 2: For all $n \geq 4$ and $\gamma$ satisfying $|\gamma| \leq b^{2},\left[a^{n}+\gamma+\frac{1}{2}\right]=L_{n}$.
Proob: We must show $L_{n} \leq a^{n}+\gamma+\frac{1}{2}<L_{n}+1$, or, using $L_{n}=a^{n}+b^{n}$,
$b^{n} \leq \gamma+\frac{1}{2}<b^{n}+1$. Since $|\gamma| \leq b^{2}$, the required inequality is satisfied if

$$
b^{n} \leq-b^{2}+\frac{1}{2}<b^{2}+\frac{1}{2}<b^{n}+1 .
$$

But $b^{n}+b^{2}<\frac{1}{2}$ and $b^{n}-b^{2}>-\frac{1}{2}$ for $n \geq 4$, so the result follows.
Thearem 3: (Cf. [4]): For $k \geq 2$ and $n \geq k+2,\left[a^{k} L_{n}+\frac{1}{2}\right]=L_{n+k}$.
Proob: $\left[a^{k} L_{n}+\frac{1}{2}\right]=\left[a^{k}\left(a^{n}+b^{n}\right)+\frac{1}{2}\right]=\left[a^{n+k}+(-1)^{k} b^{n-k}+\frac{1}{2}\right]=L_{n+k}$ by Lemma 2, since $\left|(-1)^{k} b^{n-k}\right| \leq b^{2}$ and $n+k \geq 4$.

Corollary 4: $\left[a^{n}+\frac{1}{2}\right]=L_{n}$ for $n \geq 2$.
Proof: For $n \geq 4$, result is established by Lemma 2 on taking $\gamma=0$. For $n=2$, 3, a direct verification suffices. [Recall $\alpha^{2}=\alpha+1$, so that $a^{3}=$ $(a+1) a=2 a+1]$. The result is also immediate from the fact that

$$
\left|a^{n}-\left(a^{n}+b^{n}\right)\right|=|b|^{n}<\frac{1}{2} \text { for } n \geq 2
$$

which shows that $L_{n}$ is the closest integer to $a^{n}$ for $n \geq 2$. It then follows that

$$
\left[a^{n}+\frac{1}{2}\right]=L_{n} \text { for } n \geq 2
$$

## REFERENCES

1. Robert Anaya \& Janice Crump, "A Generalized Greatest Integer Function Theorem," The Fibonacci Quarterly, Vol. 10, No. 2 (February 1972), pp. 207-211.
2. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Boston: Houghton Mifflin Co., 1969).
3. N. N. Vorobev, Fibonacci Numbers (New York: Blaisde11, 1961).
4. L. Carlitz, "A Conjecture Concerning Lucas Numbers," The Fibonacci Quarterly, Vol. 10, No. 5 (November 1972), p. 526.
*****
