SIMPLIFIED PROOF OF A GREATEST INTEGER FUNCTION THEOREM

J. L. BROWN, JR.

The Pennsylvania State University, University Park, PA 16802

The purpose of this paper is to give a simple proof of a result, due originally to Anaya and Crump [1], involving the greatest integer function [•]. In the following, $\alpha = \frac{1+\sqrt{5}}{2} \doteq 1.618$, $b = \frac{1-\sqrt{5}}{2} \doteq -0.618$, and $F_n = \frac{\alpha^n - b^n}{\sqrt{5}}$ defines the *n*th Fibonacci number for $n \ge 1$.

Definition: Let δ be defined by $\delta = \frac{1}{2} - \frac{b^2}{\sqrt{5}} > 0$.

Lemma 1: For $n \ge 2$, $\delta \le \frac{1}{2} \pm \frac{b^n}{\sqrt{5}}$.

Proof: Equivalent to $\frac{-b^2}{\sqrt{5}} \le \frac{\pm b^n}{\sqrt{5}}$ or $\pm b^n \le b^2$, which is clearly true for $n \ge 2$, since |b| < 1.

Lemma 2: For $n \ge 2$ and any γ satisfying $|\gamma| < \delta$,

$$\left[\frac{a^n}{\sqrt{5}} + \gamma + \frac{1}{2}\right] = F_n$$

Proof: We must show $F_n < \frac{a^n}{\sqrt{5}} + \gamma + \frac{1}{2} < F_n + 1$, or using $F_n = \frac{a^n - b^n}{\sqrt{5}}$ and $-|\gamma| \le \gamma \le |\gamma|$, the required inequality will be true if

$$\frac{-b^n}{\sqrt{5}} \le -|\gamma| + \frac{1}{2} \le |\gamma| + \frac{1}{2} < \frac{-b^n}{\sqrt{5}} + 1$$

The extreme left and right inequalities reduce to $|\gamma| \leq \frac{1}{2} + \frac{b^n}{\sqrt{5}}$ and $|\gamma| < \frac{1}{2} - \frac{b^n}{\sqrt{5}}$, respectively, both valid for $|\gamma| < \delta$ by Lemma 1.

Theorem 1: (Cf. [1]): For $n \ge 1$ and $1 \le k < n$, $\left[a^k F_n + \frac{1}{2}\right] = F_{n+k}$.

$$\begin{array}{l} Proo_{0} \colon \left[a^{k}F_{n} + \frac{1}{2} \right] = \left[\frac{a^{k}(a^{n} - b^{n})}{\sqrt{5}} + \frac{1}{2} \right] = \left[\frac{a^{k+n}}{\sqrt{5}} - \frac{(-1)^{k}b^{n-k}}{\sqrt{5}} + \frac{1}{2} \right] \text{ (using } \\ ab = -1) = F_{n+k} \text{ by Lemma 2 since } \left| \frac{(-1)^{k+1}b^{n-k}}{\sqrt{5}} \right| \leq \frac{|b|}{\sqrt{5}} < \delta. \\ Concllary 1 \colon ([2], \text{ pp. 34-35}) \colon F_{n+1} = \left[aF_{n} + \frac{1}{2} \right] \text{ for } n = 2, 3, 4, \ldots \\ Proo_{0} \colon \text{ Take } k = 1 \text{ in the theorem and note } 1 = k < n \text{ for } n = 2, 3, 4, \ldots \end{array}$$

SIMPLIFIED PROOF OF A GREATEST INTEGER FUNCTION THEOREM

Corollary 2: (Cf. [3], p. 22): $\left[\frac{a^n}{\sqrt{5}} + \frac{1}{2}\right] = F_n$ for all $n \ge 1$.

Proof: Clearly true for n = 1, since $a \doteq 1.618$. For $n \ge 2$, the result follows from Lemma 2 with $\gamma = 0$.

Note: The case k = n is not treated in Theorem 1, and in fact the result of the theorem fails for $n \ge 1$, $1 \le k \le n$ when n = 1 and k = 1, since

$$\left[\alpha F_1 + \frac{1}{2}\right] = \left[\alpha + \frac{1}{2}\right] = [2.118] = 2 \neq F_2 = 1$$

(thus the statement of the theorem in [1] requires modification). However, we can easily prove the following:

Theorem 2: Let $n \ge 2$ and k = n. Then $\left[\alpha^n F_n + \frac{1}{2}\right] = F_{2n}$.

$$Proof: \left[a^{n}F_{n} + \frac{1}{2}\right] = \left[\frac{a^{n}}{\sqrt{5}}(a^{n} - b^{n}) + \frac{1}{2}\right] = \left[\frac{a^{2n}}{\sqrt{5}} - \frac{(-1)^{n}}{\sqrt{5}} + \frac{1}{2}\right] = \left[\frac{a^{2n}}{\sqrt{5}} \pm \frac{1}{\sqrt{5}} + \frac{1}{2}\right]$$

which will be F_{2n} (since $\frac{a^{2n}}{\sqrt{5}} > F_{2n}$ and $\pm \frac{1}{\sqrt{5}} + \frac{1}{2} > 0$) if $\frac{a^{2n}}{\sqrt{5}} \pm \frac{1}{\sqrt{5}} + \frac{1}{2} < F_{2n} + 1$ or $\frac{-1}{2} \pm \frac{1}{\sqrt{5}} < \frac{-b^{2n}}{\sqrt{5}}$, an inequality which is easily verified for $n \ge 2$.

With both n and k unrestricted positive integers, we can also state two simple inequalities which depend on the fact that $[\cdot]$ is a nondecreasing function of its argument.

Corollary 3:

(i) For *n* even, $\left[a^{k}F_{n} + \frac{1}{2}\right] \leq F_{n+k}$ $(n \geq 1, k \geq 1)$ (ii) For *n* odd, $\left[a^{k}F_{n} + \frac{1}{2}\right] \geq F_{n+k}$ $(n \geq 1, k \geq 1)$.

Proof:

(i) With *n* even,
$$\frac{\alpha^n}{\sqrt{5}} > F_n$$
 and $\left[\alpha^k F_n + \frac{1}{2}\right] \le \left\lfloor \frac{\alpha^{k+n}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = F_{n+k}$ by Cor. 2.
(ii) Similarly, *n* odd implies $\frac{\alpha^n}{\sqrt{5}} < F_n$ and $\left[\alpha^k F_n + \frac{1}{2}\right] \ge \left\lfloor \frac{\alpha^{k+n}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = F_{n+k}$

again by application of Cor. 2.

We may also obtain a similar result on Lucas numbers due to Carlitz [4] by an analogous approach (recall $L_n = a^n + b^n$ for $n \ge 1$).

Lemma 2: For all $n \ge 4$ and γ satisfying $|\gamma| \le b^2$, $\left[a^n + \gamma + \frac{1}{2}\right] = L_n$. *Proof:* We must show $L_n \le a^n + \gamma + \frac{1}{2} < L_n + 1$, or, using $L_n = a^n + b^n$,

308

[Aug.

 $b^n \leq \gamma + \frac{1}{2} \leq b^n + 1$. Since $|\gamma| \leq b^2$, the required inequality is satisfied if $b^n \leq -b^2 + \frac{1}{2} < b^2 + \frac{1}{2} < b^n + 1.$

But $b^n + b^2 < \frac{1}{2}$ and $b^n - b^2 > -\frac{1}{2}$ for $n \ge 4$, so the result follows.

Theorem 3: (Cf. [4]): For $k \ge 2$ and $n \ge k + 2$, $\left[\alpha^{k} L_{n} + \frac{1}{2} \right] = L_{n+k}$.

 $Proof: \left[a^{k}L_{n} + \frac{1}{2}\right] = \left[a^{k}(a^{n} + b^{n}) + \frac{1}{2}\right] = \left[a^{n+k} + (-1)^{k}b^{n-k} + \frac{1}{2}\right] = L_{n+k}$ by Lemma 2, since $|(-1)^k b^{n-k}| \leq b^2$ and $n + k \geq 4$.

Corollary 4:
$$\left[a^n + \frac{1}{2}\right] = L_n \text{ for } n \ge 2.$$

Proof: For $n \ge 4$, result is established by Lemma 2 on taking $\gamma = 0$. For n = 2, 3, a direct verification suffices. [Recall $a^2 = a + 1$, so that $a^3 = a^3$ (a + 1)a = 2a + 1]. The result is also immediate from the fact that

$$|a^n - (a^n + b^n)| = |b|^n < \frac{1}{2} \text{ for } n \ge 2,$$

which shows that L_n is the closest integer to a^n for $n \geq 2$. It then follows that

$$\left[a^n+\frac{1}{2}\right]=L_n \text{ for } n\geq 2.$$

REFERENCES

- 1. Robert Anaya & Janice Crump, "A Generalized Greatest Integer Function Theorem," The Fibonacci Quarterly, Vol. 10, No. 2 (February 1972), pp. 207-211.
- 2. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Boston: Houghton Mifflin Co., 1969).
- N. N. Vorobev, Fibonacci Numbers (New York: Blaisdell, 1961).
 L. Carlitz, "A Conjecture Concerning Lucas Numbers," The Fibonacci Quarterly, Vol. 10, No. 5 (November 1972), p. 526.
