# ON SQUARE PSEUDO-FIBONACCI NUMBERS 

## A. ESWARATHASAN

University of Sri Lanka, Jaffna Campus, Tirunelvely, Jaffna, Sri Lanka

If the Fibonacci numbers are defined by

$$
u_{1}=u_{2}=1, u_{n+2}=u_{n+1}=u_{n},
$$

then J. H. E. Cohn [1] has shown that

$$
u_{1}=u_{2}=1 \quad \text { and } \quad u_{12}=144
$$

are the only square Fibonacci numbers.
If $n$ is a positive integer, we shall call the numbers defined by

$$
\begin{equation*}
u_{1}=1, u_{2}=4, u_{n+2}=u_{n+1}+u_{n} \tag{1}
\end{equation*}
$$

pseudo-Fibonacci numbers.
The object of this paper is to show that the only square pseudo-Fibonacci numbers are

$$
u_{1}=1, u_{2}=4, \text { and } u_{4}=9
$$

If we remove the restriction $n>0$, we obtain exactly one more square,

$$
u_{-8}=81 .
$$

It can easily be shown that the general solution of the difference equation (1) is given by

$$
\begin{equation*}
u_{n}=\frac{7}{5 \cdot 2^{n}}\left(\alpha^{n}+\beta^{n}\right)-\frac{1}{5 \cdot 2^{n-1}}\left(\alpha^{n-1}+\beta^{n-1}\right) \tag{2}
\end{equation*}
$$

where

$$
\alpha=1+\sqrt{5}, \beta=1-\sqrt{5}
$$

and $n$ is an integer. Let

$$
\eta_{r}=\frac{\alpha^{r}+\beta^{r}}{2^{r}}, \xi_{r}=\frac{\alpha^{r}-\beta^{r}}{2^{r} \sqrt{5}} .
$$

Then we easily obtain the following relations:

$$
\begin{gather*}
u_{n}=\frac{1}{5}\left(7 \eta_{n}-\eta_{n-1}\right),  \tag{3}\\
\eta_{r}=\eta_{r-1}+\eta_{r-2}, \eta_{1}=1, \eta_{2}=3 \tag{4}
\end{gather*}
$$

$$
\begin{align*}
& \xi_{r}=\xi_{r-1}+\xi_{r-2}, \xi_{1}=1, \xi_{2}=1,  \tag{5}\\
& \eta_{r}^{2}-5 \xi_{r}^{2}=(-1)^{r} 4,  \tag{6}\\
& \eta_{2 r}=\eta_{r}^{2}+(-1)^{r+1} 2,  \tag{7}\\
& 2 \eta_{m+n}=5 \xi_{m} \xi_{n}+\eta_{m} \eta_{n},  \tag{8}\\
& 2 \xi_{m+n}=\eta_{n} \xi_{m}+\eta_{m} \xi_{n},  \tag{9}\\
& \xi_{2 r}=\eta_{r} \xi_{r} \tag{10}
\end{align*}
$$

The following congruences hold:

$$
\begin{align*}
& u_{n+2 r} \equiv(-1)^{r+1} u_{n}\left(\bmod \eta_{r} 2^{-S}\right),  \tag{11}\\
& u_{n+2 r} \equiv(-1)^{r} u_{n}\left(\bmod \xi_{r} 2^{-S}\right), \tag{12}
\end{align*}
$$

where $S=0$ or 1 .
Let $\phi_{t}=\eta_{2^{t}}$, where $t$ is a positive integer. Then we get

$$
\begin{equation*}
\phi_{t+1}=\phi_{t}^{2}-2 \tag{13}
\end{equation*}
$$

We also need the following results concerning $\phi_{t}$ :

$$
\begin{align*}
& \phi_{t} \text { is an odd integer }  \tag{14}\\
& \phi_{t} \equiv 3(\bmod 4),  \tag{15}\\
& \phi_{t} \equiv 2(\bmod 3), t \geq 3 \tag{16}
\end{align*}
$$

We also have the following tables of values:

| $n$ | -8 | 0 | 1 | 2 | 3 | 4 | 5 | 7 | 9 | 11 | 12 | 13 | 15 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $u_{n}$ | 81 | 3 | 1 | 4 | 5 | 9 | 14 | 37 | 97 | 254 | 411 | 665 | 1741 |
| $t$ | 7 | 14 |  |  |  |  | $t$ | 4 | 7 | 8 |  |  |  |
| $\eta_{t}$ | 29 | $3 \cdot 281$ |  |  |  | $\xi_{t}$ | 3 | 13 | $3 \cdot 7$ |  |  |  |  |

Let

$$
\begin{equation*}
x^{2}=u_{n} \tag{17}
\end{equation*}
$$

The proof is now accomplished in sixteen stages:
(a) (17) is impossible if $n \equiv 3(\bmod 8)$. For, using (12) we find that

$$
u_{n} \equiv u_{3}\left(\bmod \xi_{4}\right) \equiv 5(\bmod 3)
$$

Since $\left(\frac{5}{3}\right)=-1,(17)$ is impossible.
[Aug.
(b) (17) is impossible if $n \equiv 5(\bmod 8)$. For, using (12) we find that

$$
u_{n} \equiv u_{5}\left(\bmod \xi_{4}\right) \equiv 14(\bmod 3)
$$

Since $\left(\frac{14}{3}\right)=-1$, (17) is impossible.
(c) (17) is impossible if $n \equiv 0(\bmod 16)$. For, using (12) in this case $u_{n} \equiv u_{0}\left(\bmod \xi_{8}\right) \equiv 3(\bmod 7)$, since $7 \mid \xi_{8}$. Since $\left(\frac{3}{7}\right)=-1$, (17) is impossible.
(d) (17) is impossible if $n \equiv 15(\bmod 16)$. For, using (12) we find that $u_{n} \equiv u_{15}\left(\bmod \xi_{8}\right) \equiv 1741(\bmod 7)$, since $7 \mid \xi_{8}$.
Since $\left(\frac{1741}{7}\right)=-1$, (17) is impossible.
(e) (17) is impossible if $n \equiv 12(\bmod 16)$. For, using (12) in this case $u_{n} \equiv u_{12}\left(\bmod \xi_{8}\right) \equiv 411(\bmod 7)$, since $7 \mid \xi_{8}$.
Since $\left(\frac{411}{7}\right)=-1$, (17) is impossible.
(f) (17) is impossible if $n \equiv 7(\bmod 14)$. For, using (12) we find that

$$
u_{n} \equiv \pm u_{7}\left(\bmod \xi_{7}\right) \equiv \pm 37(\bmod 13)
$$

Since $\left(\frac{-37}{13}\right)=\left(\frac{37}{13}\right)=-1$, (17) is impossible.
(g) (17) is impossible if $n \equiv 3(\bmod 14)$. For, using (12) in this case

$$
u_{n} \equiv \pm u_{3}\left(\bmod \xi_{7}\right) \equiv \pm 5(\bmod 13)
$$

Since $\left(\frac{-5}{13}\right)=\left(\frac{5}{13}\right)=-1$, (17) is impossible.
(h) (17) is impossible if $n \equiv 5(\bmod 14)$. For, using (11) we find that

$$
u_{n} \equiv u_{5}\left(\bmod \eta_{7}\right) \equiv 14(\bmod 29)
$$

Since $\left(\frac{14}{29}\right)=-1$, (17) is impossible.
(i) (17) is impossible if $n \equiv 13(\bmod 14)$. Sor, using (12) in this case $u_{n} \equiv \pm u_{13}\left(\bmod \xi_{7}\right) \equiv \pm 665(\bmod 13)$.
Since $\left(\frac{-665}{13}\right)=\left(\frac{665}{13}\right)=-1$, (17) is impossible.
(j) (17) is impossible if $n \equiv 11(\bmod 14)$. For, using (12) we find that $u_{n} \equiv \pm u_{11}\left(\bmod \xi_{7}\right) \equiv \pm 254(\bmod 13)$.

Since $\left(\frac{-254}{13}\right)=\left(\frac{254}{13}\right)=-1$, (17) is impossible.
(k) (17) is impossible if $n \equiv 9(\bmod 14)$. For, using (12) we find that

$$
u_{n} \equiv \pm u_{9}\left(\bmod \xi_{7}\right) \equiv \pm 97(\bmod 13)
$$

Since $\left(\frac{-97}{13}\right)=\left(\frac{97}{13}\right)=-1$, (17) is impossible.
(1) (17) is impossible if $n \equiv 15$ (mod 28). For, using (11) we find that $u_{n} \equiv \pm u_{14}\left(\bmod \eta_{14}\right) \equiv \pm 1741(\bmod 281)$, since $281 / \eta_{4}$.
Since $\left(\frac{-1741}{281}\right)=\left(\frac{1741}{281}\right)=-1$, (17) is impossible.
(m) (17) is impossible if $n \equiv 1(\bmod 4), n \neq 1$, that is, if $n=1+2^{t} r$, where $r$ is odd and $t$ is a positive integer $\geq 2$. For, using (11) in this case

$$
u_{n} \equiv-u_{1}\left(\bmod n_{2} t-1\right) \equiv-1\left(\bmod \phi_{t-1}\right)
$$

Now, using (15) we have $\phi_{t-1}=4 k+3$, where $k$ is a nonnegative integer. Since $\left(\frac{-1}{\phi_{t-1}}\right)=\left(\frac{-1}{4 k+3}\right)=-1$, (17) is impossible.
(n) (17) is impossible if $n \equiv 2(\bmod 4), n \neq 2$, that is, if $n=2+2^{t} r$, where $r$ is odd and $t$ is a positive integer $\geq 2$. For, using (11) we find that

$$
u_{n} \equiv-u_{2}\left(\bmod \eta_{2} t-1\right) \equiv-4\left(\bmod \phi_{t-1}\right) .
$$

Now, using (15) we have $\phi_{t-1}=4 k+3$, where $k$ is a nonnegative integer. By virtue of $(14),\left(2, \phi_{t-1}\right)=1$. Since $\left(\frac{-4}{\phi_{t-1}}\right)=\left(\frac{-4}{4 k+3}\right)=-1$,
$(17)$ is impossible.
(o) (17) is impossible if $n \equiv 4(\bmod 16), n \neq 4$, that is, if $n=4+2^{t} r$, where $r$ is odd and $t$ is a positive integer $\geq 4$. For, using (11) we find that

$$
u_{n} \equiv-u_{4}\left(\bmod \eta_{2^{t-1}}\right) \equiv-9\left(\bmod \phi_{t-1}\right)
$$

Now, using (16), we get $\left(\phi_{t-1}, 3\right)=1$, and by virtue of (15), $\phi_{t-1}=$ $4 k+3$, where $k$ is a positive integer $\geq 11$.
Next, since $\left(\frac{-9}{\phi_{t-1}}\right)=\left(\frac{-9}{4 k+3}\right)=-1$, (17) is impossible.
(p) (17) is impossible if $n \equiv-8(\bmod 16), n \neq-8$, that is, if $n=-8+$ $2^{t} r$, where $r$ is odd and $t$ is a positive integer $\geq 4$. For, using (11) in this case

$$
u_{n} \equiv-u_{-8}\left(\bmod \eta_{2} t-1\right) \equiv-81\left(\bmod \phi_{t-1}\right) .
$$

Now, using (16) we get $\left(\phi_{t-1}, 3\right)=1$, and by virtue of (15), $\phi_{t-1}=$ $4 k+3$, where $k$ is a positive integer $\geq 11$.
Next, since $\left(\frac{-81}{\phi_{t-1}}\right)=\left(\frac{-81}{4 k+3}\right)=-1$, (17) is impossible.
We have now four further cases, $n=-8,1,2$, and 4 , to consider.
(1) When $n=-8, u_{n}=81$ is a perfect square.
(2) When $n=1, u_{n}=1$ is a perfect square.
(3) When $n=2, u_{n}=4$ is a perfect square.
(4) When $n=4, u_{n}=9$ is a perfect square.

## ACKNOWLEDGMENT

The author wishes to express his sincerest gratitude to Professor P. Kanagasabapathy for helpful discussions on this work.

## REFERENCE

1. J. H. E. Cohn, "On Square Fibonacci Numbers," J. London Math. Soc., Vol. 39 (1964), pp. 537-540.
