A. ESWARATHASAN

University of Sri Lanka, Jaffna Campus, Tirunelvely, Jaffna, Sri Lanka

If the Fibonacci numbers are defined by

$$u_1 = u_2 = 1$$
, $u_{n+2} = u_{n+1} = u_n$,

then J. H. E. Cohn [1] has shown that

$$u_1 = u_2 = 1$$
 and $u_{12} = 144$

are the only square Fibonacci numbers.

If n is a positive integer, we shall call the numbers defined by

$$u_1 = 1, u_2 = 4, u_{n+2} = u_{n+1} + u_n$$
 (1)

pseudo-Fibonacci numbers.

The object of this paper is to show that the only square pseudo-Fibonacci numbers are

$$u_1 = 1$$
, $u_2 = 4$, and $u_4 = 9$.

If we remove the restriction n > 0, we obtain exactly one more square,

 $u_{-8} = 81.$

It can easily be shown that the general solution of the difference equation (1) is given by

$$u_n = \frac{7}{5 \cdot 2^n} (\alpha^n + \beta^n) - \frac{1}{5 \cdot 2^{n-1}} (\alpha^{n-1} + \beta^{n-1}), \qquad (2)$$

where

 $\alpha = 1 + \sqrt{5}, \ \beta = 1 - \sqrt{5},$

and n is an integer. Let

$$\eta_r = \frac{\alpha^r + \beta^r}{2^r}, \ \xi_r = \frac{\alpha^r - \beta^r}{2^r \sqrt{5}}.$$

Then we easily obtain the following relations:

$$u_n = \frac{1}{5} (7\eta_n - \eta_{n-1}), \qquad (3)$$

$$\eta_r = \eta_{r-1} + \eta_{r-2}, \ \eta_1 = 1, \ \eta_2 = 3, \tag{4}$$

$$\xi_r = \xi_{r-1} + \xi_{r-2}, \ \xi_1 = 1, \ \xi_2 = 1, \tag{5}$$

$$\eta_r^2 - 5\xi_r^2 = (-1)^r 4, \tag{6}$$

$$\eta_{2r} = \eta_r^2 + (-1)^{r+1} 2, \tag{7}$$

$$2\eta_{m+n} = 5\xi_m \xi_n + \eta_m \eta_n, \tag{8}$$

$$2\xi_{m+n} = \eta_n \xi_m + \eta_m \xi_n, \qquad (9)$$

$$\xi_{2r} = \eta_r \xi_r. \tag{10}$$

The following congruences hold:

$$u_{n+2r} \equiv (-1)^{r+1} u_n (\text{mod } \eta_r 2^{-S}), \qquad (11)$$

$$u_{n+2r} \equiv (-1)^{r} u_{n} (\text{mod } \xi_{r} 2^{-s}), \qquad (12)$$

where S = 0 or 1.

Let $\phi_t = \eta_{2^t}$, where t is a positive integer. Then we get

$$\phi_{t+1} = \phi_t^2 - 2. \tag{13}$$

We also need the following results concerning ϕ_t :

$$\phi_t$$
 is an odd integer, (14)

$$\phi_t \equiv 3 \pmod{4}, \tag{15}$$

$$\phi_t \equiv 2 \pmod{3}, \ t \geq 3. \tag{16}$$

We also have the following tables of values:

п	-8	0	1	2	3	4	5	7	9	11	12	13	15
U _n	81	3	1	4	5	9	14	37	97	254	411	665	1741
t	7	14						t	4	7	8		
η _t	29	3	• 281					ξ _t	3	13	3•7		

Let

$$x^2 = u_n. \tag{17}$$

The proof is now accomplished in sixteen stages:

(a) (17) is impossible if $n \equiv 3 \pmod{8}$. For, using (12) we find that

$$u_n \equiv u_3 \pmod{\xi_4} \equiv 5 \pmod{3}$$
.

Since $\left(\frac{5}{3}\right)$ = -1, (17) is impossible.

Aug. 1978

(b) (17) is impossible if $n \equiv 5 \pmod{8}$. For, using (12) we find that $u_n \equiv u_5 \pmod{\xi_4} \equiv 14 \pmod{3}$.

Since $\left(\frac{14}{3}\right)$ = -1, (17) is impossible.

(c) (17) is impossible if $n \equiv 0 \pmod{16}$. For, using (12) in this case $u_n \equiv u_0 \pmod{\xi_8} \equiv 3 \pmod{7}$, since $7 | \xi_8$.

Since $\left(\frac{3}{7}\right)$ = -1, (17) is impossible.

(d) (17) is impossible if $n \equiv 15 \pmod{16}$. For, using (12) we find that $u_n \equiv u_{15} \pmod{\xi_8} \equiv 1741 \pmod{7}$, since $7 | \xi_8$.

Since $\left(\frac{1741}{7}\right) = -1$, (17) is impossible.

(e) (17) is impossible if $n \equiv 12 \pmod{16}$. For, using (12) in this case $u_n \equiv u_{12} \pmod{\xi_8} \equiv 411 \pmod{7}, \text{ since } 7 | \xi_8.$

Since $\left(\frac{411}{7}\right)$ = -1, (17) is impossible.

(f) (17) is impossible if $n \equiv 7 \pmod{14}$. For, using (12) we find that $u_n \equiv \pm u_7 \pmod{\xi_7} \equiv \pm 37 \pmod{13}$.

Since $\left(\frac{-37}{13}\right) = \left(\frac{37}{13}\right) = -1$, (17) is impossible.

(g) (17) is impossible if $n \equiv 3 \pmod{14}$. For, using (12) in this case

 $u_n \equiv \pm u_3 \pmod{\xi_7} \equiv \pm 5 \pmod{13}.$ Since $\left(\frac{-5}{13}\right) = \left(\frac{5}{13}\right) = -1$, (17) is impossible.

(h) (17) is impossible if $n \equiv 5 \pmod{14}$. For, using (11) we find that

 $u_n \equiv u_5 \pmod{\eta_7} \equiv 14 \pmod{29}$.

Since $\left(\frac{14}{29}\right)$ = -1, (17) is impossible.

(i) (17) is impossible if $n \equiv 13 \pmod{14}$. Sor, using (12) in this case

 $u_n \equiv \pm u_{13} \pmod{\xi_7} \equiv \pm 665 \pmod{13}$.

Since $\left(\frac{-665}{13}\right) = \left(\frac{665}{13}\right) = -1$, (17) is impossible.

(j) (17) is impossible if $n \equiv 11 \pmod{14}$. For, using (12) we find that $u_n \equiv \pm u_{11} \pmod{\xi_7} \equiv \pm 254 \pmod{13}.$ Since $\left(\frac{-254}{13}\right) = \left(\frac{254}{13}\right) = -1$, (17) is impossible.

(k) (17) is impossible if $n \equiv 9 \pmod{14}$. For, using (12) we find that

 $u_n \equiv \pm u_9 \pmod{\xi_7} \equiv \pm 97 \pmod{13}.$ Since $\left(\frac{-97}{13}\right) = \left(\frac{97}{13}\right) = -1$, (17) is impossible.

(1) (17) is impossible if $n \equiv 15 \pmod{28}$. For, using (11) we find that

 $u_n \equiv \pm u_{14} \pmod{\eta_{14}} \equiv \pm 1741 \pmod{281}$, since $281/\eta_4$. Since $\left(\frac{-1741}{281}\right) = \left(\frac{1741}{281}\right) = -1$, (17) is impossible.

(m) (17) is impossible if $n \equiv 1 \pmod{4}$, $n \neq 1$, that is, if $n = 1 + 2^t r$, where r is odd and t is a positive integer ≥ 2 . For, using (11) in this case

 $u_n \equiv -u_1 \pmod{\eta_2 t - 1} \equiv -1 \pmod{\phi_{t-1}}.$

Now, using (15) we have $\phi_{t-1} = 4k + 3$, where k is a nonnegative integer. Since $\left(\frac{-1}{\phi_{t-1}}\right) = \left(\frac{-1}{4k + 3}\right) = -1$, (17) is impossible.

(n) (17) is impossible if $n \equiv 2 \pmod{4}$, $n \neq 2$, that is, if $n = 2 + 2^t r$, where r is odd and t is a positive integer ≥ 2 . For, using (11) we find that

$$u_n \equiv -u_2 \pmod{\eta_2 t - 1} \equiv -4 \pmod{\phi_{t-1}}.$$

Now, using (15) we have $\phi_{t-1} = 4k + 3$, where k is a nonnegative integer. By virtue of (14), (2, ϕ_{t-1}) = 1. Since $\left(\frac{-4}{\phi_{t-1}}\right) = \left(\frac{-4}{4k+3}\right) = -1$, (17) is impossible.

(o) (17) is impossible if $n \equiv 4 \pmod{16}$, $n \neq 4$, that is, if $n = 4 + 2^t r$, where r is odd and t is a positive integer ≥ 4 . For, using (11) we find that

$$u_n \equiv -u_4 \pmod{\eta_{2^{t-1}}} \equiv -9 \pmod{\phi_{t-1}}.$$

Now, using (16), we get $(\phi_{t-1}, 3) = 1$, and by virtue of (15), $\phi_{t-1} = 4k + 3$, where k is a positive integer ≥ 11 .

Next, since
$$\left(\frac{-9}{\phi_{t-1}}\right) = \left(\frac{-9}{4k+3}\right) = -1$$
, (17) is impossible.

(p) (17) is impossible if $n \equiv -8 \pmod{16}$, $n \neq -8$, that is, if $n = -8 + 2^t r$, where r is odd and t is a positive integer ≥ 4 . For, using (11) in this case

$$u_n \equiv -u_{-8} \pmod{\eta_2 t - 1} \equiv -81 \pmod{\phi_{t-1}}.$$

Now, using (16) we get $(\phi_{t-1}, 3) = 1$, and by virtue of (15), $\phi_{t-1} = 4k + 3$, where k is a positive integer ≥ 11 .

Next, since
$$\left(\frac{-81}{\phi_{t-1}}\right) = \left(\frac{-81}{4k+3}\right) = -1$$
, (17) is impossible.

We have now four further cases, n = -8, 1, 2, and 4, to consider.

- (1) When n = -8, $u_n = 81$ is a perfect square.
- (2) When n = 1, $u_n = 1$ is a perfect square.
- (3) When n = 2, $u_n = 4$ is a perfect square.
- (4) When n = 4, $u_n = 9$ is a perfect square.

ACKNOWLEDGMENT

The author wishes to express his sincerest gratitude to Professor P. Kanagasabapathy for helpful discussions on this work.

REFERENCE

 J. H. E. Cohn, "On Square Fibonacci Numbers," J. London Math. Soc., Vol. 39 (1964), pp. 537-540.
