ROSALIND GUARALDO St. Francis College, Brooklyn, NY 11201

1. INTRODUCTION

Throughout what follows, we will let n denote an arbitrary nonnegative integer, S(n) a nonnegative integer-valued function of n, and T(n) = n + S(n). We also let $\mathfrak{P} = \{x | x = T(n) \text{ for some } n\}$ and $\mathfrak{C} = \text{complement of } \mathfrak{P} = \{n \ge 0 | n \notin \mathfrak{P}\}.$

It is of interest to ask whether or not the set C is infinite. We can also pose the question: does the set \mathcal{R} have asymptotic density and, if so, does \mathcal{R} (or C) have positive density? It might be suspected that if S(n) is "small" there is a good chance that \mathcal{R} has density. However, this suspicion is incorrect, as can be seen from the following example: for a given $n \geq 1$, let k be the unique integer satisfying $k! \leq n \leq (k + 1)! - 1$ and define

$$S(n) = \begin{cases} 0 & \text{if } k \text{ is odd} \\ 1 & \text{if } n = k! + k_1, \ k \text{ and } k_1 \text{ even, } 0 \le k_1 \le (k+1)! - 1 \\ 0 & \text{if } n = k! + k_1, \ k \text{ even, } k_1 \text{ odd and as above} \end{cases}$$

Then *n* or n+1 belongs to \mathfrak{P} for every natural number *n*, so if δ and Δ denote the lower and upper density of \mathfrak{P} , respectively, we have $\frac{1}{2} \leq \delta \leq \Delta \leq 1$. Now if $D(n) = \{x \leq n | x = T(y) \text{ for some } y\}$ then

$$\frac{D((k+1)! - 1)}{(k+1)! - 1} = \frac{\frac{1}{2}((k+1)! - k!) - (k! - 1 - (k-1)!) - \cdots}{(k+1)! - 1} \le \frac{1}{2} + o(1)$$

if k is even, and

$$\frac{D((k+1)!-1)}{(k+1)!-1} = \frac{(k+1)!-k!-\frac{1}{2}(k!-1-(k-1)!)-\cdots}{(k+1)!-1} \ge 1+o(1)$$

if k is odd. Hence, $\delta = \frac{1}{2}$ and $\Delta = 1$. Therefore, even if S(n) can take on only the values 0 and 1, it is possible for \mathcal{P} not to have density.

Let $b \ge 2$ be arbitrary and let $n = \sum_{j=0}^{k} d_j b^j$ be the unique representation of n in base b. Define $S(n) = \sum_{j=0}^{k} f(d_j, j)$, where f(d, j) is a nonnegative

integer-valued function of the digit d and the place where the digit occurs, and T(n) = n + S(n). The consideration of functions of this form is motivated by the problem (which was posed in [1]) of showing that C is infinite when

 $T(n) = n + \sum_{j=0}^{n} d_j$. A solution, as given in [2], was obtained by recursively

constructing an infinite sequence of integers in C for all bases b. It was also observed in [2] that if b is odd then T(n) is always even. In fact, \mathcal{R} is precisely the set of all nonnegative even integers when b is odd. To see

Aug. 1978

ON THE DENSITY OF THE IMAGE SETS OF CERTAIN ARITHMETIC FUNCTIONS-I

this, observe that $n \equiv S(n) \pmod{b-1}$ and, therefore, $T(n) \equiv 2S(n) \pmod{b-1}$ where $S(n) = \sum_{j=0}^{k} d_{j}$. Hence T(n) is even if b is odd. Since T(0) = 0, $T(n+1) \leq T(n) + 2$ for every natural number n, and $T(n) \neq \infty$ as $n \neq \infty$, the result is proved.

2. EXISTENCE AND COMPUTABILITY OF THE DENSITY

Again, letting $n = \sum_{j=0}^{k} d_{j} b^{j}$, $S(n) = \sum_{j=0}^{k} f(d_{j}, j)$, and T(n) = n + S(n), we prove that the density of \mathcal{R} exists and is in fact computable when suitable hypotheses are placed on the function f. We will adhere to the following notation:

$$\Omega(k, r) = \{T(x) | k \le x \le r\}$$

$$\Omega(r) = \Omega(0, r)$$

$$D(k, r) = |\Omega(k, r)|$$

$$D(r) = |\Omega(r)|.$$

Theorem 2.1: Let f(d, j) (d = 0, 1, ..., b - 1) be a family of nonnegative integer-valued functions satisfying

(a) f(0, j) = 0, j = 0, 1, 2, ...(b) $f(d, j) = o(b^j), 1 \le d \le b - 1.$

Then the density of \mathcal{P} exists.

Proof: First, we show that

$$D(db^k, db^k + r) = D(r), \ 0 \le r \le b^k - 1, \ 0 \le d \le b - 1.$$
 (2.2)

To prove this, suppose that

$$x = db^{k} + \sum_{j=0}^{k-1} d_{j}b^{j}$$
 and $y = db^{k} + \sum_{j=0}^{k-1} d_{j}^{j}b^{j}$.

Clearly T(x) = T(y) if and only if

$$T\left(\sum_{j=0}^{k-1} d_j b^j\right) = T\left(\sum_{j=0}^{k-1} d_j^{\prime} b^j\right)$$

Now if $d_{k-1} = d_{k-2} = \cdots = d_{k-t} = 0$ (or if $d'_{k-1} = d_{k-2} = \cdots = d'_{k-t} = 0$), then, by assumption (a), we see that

$$T\left(\sum_{j=0}^{k-t-1} d_{j}b^{j}\right) = T\left(\sum_{j=0}^{k-1} d_{j}b^{j}\right) = T\left(\sum_{j=0}^{k-1} d_{j}^{\prime}b^{j}\right).$$

We therefore have a one-one correspondence between the elements of $\Omega(db^k, db^k + r)$ and $\Omega(r)$, $0 \le r \le b^k - 1$, from which (2.2) follows. In particular, if $r = b^k - 1$, we have

$$D(db^{k}, (d+1)b^{k} - 1) = D(b^{k} - 1).$$
 (2.3)

1. . .

Our next lemma will enable us to relate
$$D(b^{k+1} - 1)$$
 to

$$\sum_{d=0}^{b-1} D(db^k, (d+1)b^k - 1).$$

Lemma 2.4: There exists an integer k_0 such that for all $k \ge k_0$ the sets $\Omega(0, b^k - 1), \Omega(b^k, 2b^k - 1), \ldots, \Omega((b - 1)b^k, b^{k+1} - 1)$ are pairwise disjoint, except possibly for adjacent pairs.

Proof: The maximum value of any element in $\Omega(db^k, (d+1)b^k - 1)$ is at most $(d+1)b^k - 1 + M_k(k+1)$, where $M_k = \max\{f(d, j) \mid 0 \le j \le k\}$ and the minimum value of any element in $\Omega((d+2)b^k, (d+3)b^k - 1)$ is at least $(d+2)b^k$. Because of assumption (b), there exists k'_0 such that $f(d, j) < b^{j/2}$ for all $j \ge k'_0$ and there exists $k_0 \ge k'_0$ such that $f(d, j) < b^{j/2} - M_{k'_0}(k'_0 + 1)$, whenever $k_0 \ge k'_0$, where

Therefore,

$$M_{k'_{0}} = \max \{f(d, j) | 0 \le j \le k'_{0}\}.$$

$$\sum_{j=0}^{k} f(d_{j}, j) = \sum_{j=0}^{k'_{0}} f(d_{j}, j) + \sum_{j=k'_{0}+1}^{k} f(d_{j}, j) + \sum_{j=k_{0}+1}^{k} f(d_{j}, j)$$

$$\leq M_{k'_{0}} (k'_{0} + 1) + \sum_{j=k'_{0}+1}^{k} b^{j}/2 - M_{k'_{0}} (k'_{0} + 1) (k - k_{0})$$

$$\leq \sum_{j=k'_{0}+1}^{k} b^{j}/2 \le b^{k} \text{ for all } k \ge k_{0},$$

so, in particular, $M_k(k + 1) < b^k$. Hence,

$$(d + 1)b^{k} - 1 + M_{k}(k + 1) < (d + 2)b^{k}$$

whenever $k \ge k_0$, which completes the proof of the lemma.

Now $D(b^{k+1} - 1) = \sum_{d=0}^{b-1} D(db^k, (d+1)b^k - 1) - Q$, where Q depends on the size of the intersections of the sets

$$\Omega(0, b^{k} - 1), \Omega(b^{k}, 2b^{k} - 1), \dots, \Omega((b - 1)b^{k}, b^{k+1} - 1).$$

Define

$$\lambda_{d,k} = \left| \Omega(db^k, (d+1)b^k - 1) \cap \Omega(d+1)b^k, ((d+2)b^k - 1) \right|, \ 0 \le d \le b - 2.$$

Using Lemma 2.4 and Equation (2.3) we obtain

Using Lemma 2.4 and Equation (2.3), we obtain

$$D(b^{k+1} - 1) = bD(b^{k} - 1) - \sum_{d=0}^{b-1} \lambda_{d,k}, \ k \ge k_0.$$
(2.5)

Let

$$A_k = D(b^k - 1)/b^k$$
 and $\varepsilon_k = \sum_{d=0}^{b-2} \lambda_{d,k}/b^{k+1}, k \ge k_0.$

Then 2.5 can be rewritten as

 $A_{k+1} - A_k = -\varepsilon_k.$

Therefore,

320

[Aug.

$$A_{k+1} - A_k = -\varepsilon_k$$
$$A_k - A_{k-1} = -\varepsilon_{k-1}$$
$$\vdots$$
$$A_{k_0+1} - A_{k_0} = -\varepsilon_{k_0}$$

and by telescoping, we obtain

$$A_{k+1} = A_{k_0} - \sum_{j=k_0}^{k} \varepsilon_j.$$

Replacing k + 1 by k yields

$$A_{k} = A_{k_{0}} - \sum_{j=k_{0}}^{k-1} \varepsilon_{j}, \ k \ge k_{0}.$$
(2.6)

Obviously, $1/b^k \leq A_k \leq 1$ and $\sum_{j=k_0}^{\kappa-1} \varepsilon_j = A_{k_0} - A_k < A_{k_0} \leq 1$. Thus $\sum_{j=k_0}^{\kappa} \varepsilon_j$ is a series of nonnegative terms bounded above by A_{k_0} , hence is convergent. Let

$$L = A_{k_0} - \sum_{j=k_0}^{\infty} \varepsilon_j$$
(2.7)

(We have just shown that $0 \le L \le 1$). Then, (2.6) yields

$$A_{k} = L + \sum_{j=k}^{\infty} \varepsilon_{j}, \ k \ge k_{0};$$

i.e.,

$$A_k = L + o(1). (2.8)$$

Hence

$$D(b^{k} - 1) = Lb^{k} + o(b^{k}).$$
(2.9)

Using (2.3), (2.4), (2.9), and recalling the definition of the $\lambda_{d,k}$ and the ε_k , we have

$$D(db^{k} - 1) = \sum_{c=0}^{d-1} D(cb^{k}, (c+1)b^{k} - 1) - \sum_{c=0}^{d-2} \lambda_{d,k}$$
$$= \sum_{c=0}^{d-1} (Lb^{k} + o(b^{k})) + 0(b^{k+1}\varepsilon_{k}) = db^{k}L + o(b^{k});$$
$$D(db^{k} - 1) = db^{k}L + o(b^{k}).$$
(2.10)

i.e.,

Now let
$$n = \sum_{j=0}^{k} d_{j}b^{j}$$
 be any nonnegative integer. Then

$$D(n) = D\left(\sum_{j=0}^{k} d_{j}b^{j}\right)$$

$$= D(d_{k}b^{k} - 1) + D\left(d_{k}b^{k}, \sum_{j=0}^{k} d_{j}b^{j}\right) - Q,$$

where Q is the number of elements that the sets

$$\Omega(d_k b^k - 1)$$
 and $\Omega\left(d_k b^k, \sum_{j=0}^k d_j b^j\right)$

have in common. Therefore, if n is sufficiently large, then by using (2.10), (2.2), and the definition of the $\lambda_{d,k}$, we have

$$D(n) = d_k b^k L + o(b^k) + D\left(\sum_{j=0}^{k-1} d_j b^j\right) + o(b^k) = d_k b^k L + D\left(\sum_{j=0}^{k-1} d_j b^j\right) + o(b^k).$$

Applying the same reasoning to the quantities $D\left(\sum_{j=0} d_j b^j\right)$, $k_0 \le t \le k-1$, we eventually obtain

$$D(n) = L\left(\sum_{j=k_0}^{k} d_j b^j\right) + D\left(\sum_{j=0}^{k_0-1} d_j b^j\right) + \sum_{j=k_0}^{k} o(b^j);$$
$$D(n) = L\left(n - \sum_{j=0}^{k_0-1} d_j b^j\right) + D\left(\sum_{j=0}^{k_0-1} d_j b^j\right) + o(n).$$

i.e.,

Dividing both sides of this equation by n yields

D

$$(n)/n = L + o(1),$$

which proves the density of \mathfrak{P} is L.

Remark: It should be noted that Equation (2.2), and therefore the above proof of Theorem 2.2, breaks down if we lift the condition f(0, j) = 0.

A particular case of Theorem 2.1 of interest occurs when we assume that f depends only on d:

Corollary 2.11: If f(d) is an arbitrary nonnegative function of d, $1 \le d \le b - 1$, and f(0) = 0, then the density of \mathfrak{P} exists and is equal to L, where L is defined as in Equation (2.7).

We also easily obtain the following two corollaries to Theorem 2.1:

Corollary 2.12: L < 1 if and only if the function T(n) is not one-one.

Proof: We have

$$L = A_{k_0} - \sum_{j=k_0}^{\infty} \varepsilon_j = A_k - \sum_{j=k}^{\infty} \varepsilon_j, \text{ for all } k \ge k_0,$$

where k_0 is defined as in Lemma 2.4. If T(x) = T(y), $x \neq y$, and k is such that $k \geq k_0$ and $x \leq b^k - 1$, $y \leq b^k - 1$, then, since $A_k = D(b^k - 1)/b^k$, it follows that $L \leq A_k < 1$. If T is one-one, then it follows from the definition of the A_k and the ε_k that $A_k = 1$ and $\varepsilon_k = 0$ for all k, so L = 1.

Corollary 2.13: If f(d, j) = f(d) depends only on d and if f(0) = 0 and $f(b - 1) \neq 0$, then L < 1.

Proof: Let f(b-1) = s > 0. Then $T(b^k - 1) = T((b-1)b^{k-1} + (b-1)b^{k-2} + \dots + b - 1) = b^k - 1 + ks$.

[Aug.

Now, if k is such that $ks - 1 - f(1) < b^k$ and $n = \sum_{j=0}^r d_j b^j$ satisfies T(n) = ks - 1 - f(1), then $n < b^k$ since $T(n) \ge n$. Hence $T(b^k + n) = T(b^k) + T(n) = b^k + f(1) + ks - 1 - f(1) = b^k - 1 + ks = T(b^k - 1)$. Therefore T is not oneone, so L < 1 by the above corollary. If there is never any n which satisfies the equation T(n) = ks - 1 - f(1), then almost all integers of the form ks - 1 - f(1), $k = 1, 2, 3, \ldots$, do not belong to \mathfrak{P} , hence, C has positive density, so L < 1 in this case also.

Remark: The problem posed in [1] is now an immediate consequence of the above corollary.

More generally, it seems to be true that if f(d) is not identically 0 and f(0) = 0, then we again have L < 1. We let this statement stand as a conjecture. Note that the hypothesis f(0) = 0 is essential; for example, if f is any nonzero constant, then T(n) is strictly increasing and therefore L = 1.

There is another question which can be raised about the value of the density L: must one always have L > 0 under the hypotheses of Theorem 2.1? Again, the proof of this result, if true, seems to be elusive. Since

$$L = A_k - \sum_{j=k}^{\infty} \varepsilon_j \text{ for } k \ge k_0,$$

we see that L = 0 if and only if $A_k = o(1)$, which means that the function T(n) must be very far from being one-one.

3. EXISTENCE OF THE DENSITY WHEN $f(d, j) = O(b^j/j^2 \log^2 j)$

The main drawback to Theorem 2.1 is the condition f(0, j) = 0. It seems to be difficult to prove that the density of \mathfrak{P} exists if we assume only that $f(d, j) = o(b^j)$ for all digits d. On the other hand, it also seems to be difficult to find an example of an image set \mathfrak{P} which does not have density under the latter assumption on f, so that the statement that \mathfrak{P} does have density under this assumption will be left as a conjecture. However, the following weaker result does hold:

Theorem 3.1: If $f(d, j) = 0(b_j/j^2 \log^2 j)$ for all d, then the density of \mathfrak{P} exists.

Proof: Letting
$$n = \sum_{j=0}^{k} d_j b^j$$
, we have

$$S(n) = \sum_{j=0}^{k} 0(b^j/j^2 \log^2 j) = 0(b^k/k^2 \log^2 k).$$
(3.2)

Now if $r \leq s \leq t$ (r < t) and $s < b^{k+1}$, then, letting D and Ω be the same as in the proof of Theorem 2.1, we see that

$$D(r, t) = D(r, s) + D(s + 1, t) - |\Omega(r, s) \cap \Omega(s + 1, t)|.$$

Hence, by (3.2),

$$D(r, t) = D(r, s) + D(s + 1, t) + O(b^{k}/k^{2} \log^{2} k).$$
(3.3)

In particulr, if r = 0, $s = b^{k-1} - 1$, and $t = b^k - 1$, then

1978]

[Aug.

$$\begin{split} D(b^k - 1) &= D(0, \ b^{k-1} - 1) + D(b^{k-1}, \ b^k - 1) + 0(b^{k-1}/(k-1)^2 \ \log^2(k-1)). \\ \text{Similarly, we see that} \\ D(b^q - 1) &= D(0, \ b^{q-1} - 1) + D(b^{q-1}, \ b^q - 1) + 0(b^{q-1}/(q-1)^2 \ \log^2(q-1)), \\ &\quad 1 \le q \le k-1. \end{split}$$

Using the two latter equations and (3.2), we obtain

$$D(b^{k} - 1) = D(0) + D(1, b - 1) + \dots + D(b^{q-1}, b^{q} - 1)$$

$$+ \dots + D(b^{k-1}, b^{k} - 1) + O(b^{k}/k^{2} \log^{2} k).$$
(3.4)

Let us now consider the quantity $D(db^k, (d+1)b^k - 1)$. From (3.3), we have

$$D(db^{k}, (d+1)b^{k} - 1) = D(db^{k}, db^{k}) + D(db^{k} + 1, db^{k} + b - 1) + D(db^{k} + b, (d+1)b^{k} - 1) + O(b^{k}/k^{2} \log^{2} k).$$

A second application of (3.3) yields

$$D(db^{k}, (d + 1)b^{k} - 1) = D(db^{k}, db^{k}) + D(db^{k} + 1, db^{k} + b - 1) + D(db^{k} + b, db^{k} + b^{2} - 1) + D(db^{k} + b^{2}, (d + 1)b^{k} - 1) + 0(b^{k}/k^{2} \log^{2} k),$$

and by repeatedly applying (3.3), we eventually obtain

$$D(db^{k}, (d+1)b^{k} - 1) = D(db^{k}, db^{k}) + D(db^{k} + 1, db^{k} + b - 1)$$
(3.5)
+ ... + $D(db^{k} + b^{q}, db^{k} + b^{q+1} - 1)$
+ ... + $D(db^{k} + b^{k-1}, db^{k} + b^{k} - 1) + O(b^{k}/k \log^{2} k).$

Since all integers x satisfying

$$db^{k} + b^{q} \le x \le db^{k} + b^{q+1} - 1 \quad (0 \le q \le k - 1)$$

have the same number of leading zeros, there is a one-one correspondence between the elements of $\Omega(db^k + b^q, db^k + b^{q+1} - 1)$ and $\Omega(b^q, b^{q+1} - 1)$, i.e.,

$$D(db^{k} + b^{q}, db^{k} + b^{q+1} - 1) = D(b^{q}, b^{q+1} - 1).$$

Using this fact, (3.5) becomes

$$D(db^{k}, (d+1)b^{k} - 1) = D(0) + D(1, b - 1)$$

$$+ \cdots + D(b^{k-1}, b^{k} - 1) + O(b^{k}/k \log^{2} k),$$
(3.6)

and (3.4) and (3.6) imply that

$$D(db^{k}, (d+1)b^{k} - 1) = D(b^{k} - 1) + O(b^{k}/k \log^{2} k).$$
(3.7)

Now, from (3.7),

$$D(b^{k+1} - 1) = D(b^{k} - 1) + D(b^{k}, b^{k+1} - 1) + O(b^{k}/k^{2} \log^{2} k)$$

= $D(b^{k} - 1) + D(b^{k}, 2b^{k} - 1) + D(2b^{k}, b^{k+1} - 1)$
+ $O(b^{k}/k^{2} \log^{2} k)$
= $2D(b^{k} - 1) + D(2b^{k}, b^{k+1} - 1) + O(b^{k}/k \log^{2} k).$

By repeated application of (3.7), we have

324

$$D(b^{k+1} - 1) = bD(b^{k} - 1) + O(b^{k}/k \log^{2} k).$$
(3.8)
Letting $A_{k} = D(b^{k} - 1)/b^{k}$, (3.8) becomes
 $b^{k+1}A_{k+1} - b^{k+1}A_{k} = O(b^{k}/k \log^{2} k)$

and therefore

ι

1978]

$$A_{k+1} - A_k = 0(1/k \log^2 k).$$

Since
$$\sum_{j=0}^{n} O(1/j \log^2 j) = O(1/\log k)$$
, there exists a constant L such that
$$A_k = L + O(1/\log k).$$
 (3.9)

Let
$$n = d_{k_1}^{+} b^{k_1} + d_{k_2}^{+} b^{k_2}^{+} + \cdots$$
 be any integer, each $d_{k_j} \neq 0$. Then
 $D(n) = D(d_{k_1}^{+} b^{k_1} - 1) + D(d_{k_1}^{+} b^{k_1}, n) + O(b^{k_1}/k_1^2 \log^2 k_1).$

By the same reasoning used to obtain (3.8), we see that

$$D(d_{k_1}b^{k_1} - 1) = d_{k_1}D(b^{k_1} - 1) + O(b^{k_1}/k_1 \log^2 k_1).$$

Therefore, by (3.9), we have

$$D(n) = d_{k_1} b^{k_1} (L + 0(1/\log k_1)) + 0(b^{k_1}/k_1 \log^2 k_1) + D(d_{k_1} b^{k_1}, d_{k_1} b^{k_1} + d_{k_2} b^{k_2} + \cdots).$$

Since $d_{k_i} \neq 0$ for any j, we know that

$$D(d_{k_1}b^{k_1}, d_{k_1}b^{k_1} + d_{k_2}b^{k_2} + \cdots) = D(d_{k_2}b^{k_2} + \cdots)$$

[c.f. the reasoning applied between equations (3.5) and (3.6)]. Hence,

$$D(n) = d_{k_1} b^{k_1} (L + 0(1/\log k_1)) + 0(b^{k_1}/k_1 \log^2 k_1) + D(d_{k_2} b^{k_2} + \cdots).$$

Continuing in this manner, we have

$$D(n) = nL + 0(b^{k_1}/k_1 \log^2 k_1) + \sum_{j=0}^{k_1} 0(b^j/\log j) = nL + 0(b^{k_1}/\log k_1).$$

This last equation shows that the density of \mathfrak{P} is L, q.e.d.

Remark I: This theorem, in contrast to Theorem 2.1, has the drawback that no formula for the density of P has been derived.

Remark II: It is interesting to note that there exist sets \mathfrak{P} which do not have density under the assumption that $f(d, j) = 0(b^j)$. For example, let f(d, j) = 0 if j is even and $f(d, j) = b^j$ if j is odd. Evidently,

$$T\left(b^{k} + \sum_{j=0}^{k-1} d_{j}b^{j}\right) = b^{k} + \sum_{j=0}^{k-1} d_{j}b^{j} + b^{k} + b^{k-2} + \dots + b \ge 2b^{k}$$

if k is odd, and

$$T\left(b^{k} + \sum_{j=0}^{k-1} d_{j}b^{j}\right) = b^{k} + \sum_{j=0}^{k-1} d_{j}b^{j} + b^{k-1} + b^{k-3} + \dots + b^{k-1}$$

if k is even.

Therefore, the number of integers between b^k and $2b^k$ in \mathfrak{P} if k is odd is at most $1 + b^{k-2} + b^{k-4} + \cdots + b$, and the number of integers between b^k and $2b^k$ in \mathfrak{P} if k is even is at least $b^k - b^{k-1} - b^{k-3} - \cdots - b$. Hence, if we let δ and Δ denote the lower and upper density of \mathfrak{P} , respectively, we see that 112 1- 4

$$0 \le 1/b^2 + 1/b^4 + 1/b^6 + \cdots = 1/(b^2 - 1/b^2)$$

and

$$\Delta \ge 1 - 1/b - 1/b^3 - 1/b^5 - \cdots = 1 - b/(b^2 - 1).$$

1)

Since $1 - b/(b^2 - 1) > 1/(b^2 - 1)$ when b > 2, it follows that \mathfrak{P} does not have density if $b \neq 2$.

It is also interesting that we can obtain examples in which the set \mathfrak{P} is of density 0 if $f(d, j) = 0(b^j)$. For example, if b = 10 and f(d, j) = 0 if $d \neq 1$ and $f(d, j) = 8 \cdot 10^{j}$ if d = 1, then no member of \mathcal{P} has a 1 anywhere in its decimal representation, and the set

$$n = \left\{ \sum_{j=0}^{k} d_{j} 10^{j}, d_{j} \neq 1, 0 \le j \le k \right\}$$

is a set which is well known to have density 0.

Corollary 3.10: If f(d) is an arbitrary nonnegative function of the digit d, then the density of \mathfrak{P} exists.

ACKNOWLEDGMENT

The author wishes to thank her thesis advisor, Professor Eugene Levine, of Adelphi University, for the guidance received from him during the preparation of this work.

REFERENCES

- "Problem E 2408," proposed by Bernardo Racomon, American Math. Monthly, 1.
- Vol. 80, No. 4 (April 1973), p. 434. "Solution to Problem E 2408," American Math. Monthly, Vol. 81, No. 4 2. (April 1974), p. 407.

326

Aug. 1978