ON THE DENSITY OF THE IMAGE SETS OF CERTAIN ARITHMETIC FUNCTIONS-I

ROSALIND GUARALDO
St. Francis College, Brooklyn, NY 11201

1. INTRODUCTION

Throughout what follows, we will let n denote an arbitrary nonnegative integer, $S(n)$ a nonnegative integer-valued function of n, and $T(n)=n+S(n)$. We also let $\mathcal{R}=\{x \mid x=T(n)$ for some $n\}$ and $C=$ complement of $\mathbb{Q}=\{n \geq 0 \mid n \notin Q\}$.

It is of interest to ask whether or not the set C is infinite. We can also pose the question: does the set \mathbb{R} have asymptotic density and, if so, does Q (or C) have positive density? It might be suspected that if $S(n)$ is "small" there is a good chance that Q has density. However, this suspicion is incorrect, as can be seen from the following example: for a given $n \geq 1$, let k be the unique integer satisfying $k!\leq n \leq(k+1)!-1$ and define

$$
S(n)=\left\{\begin{array}{l}
0 \text { if } k \text { is odd } \\
1 \text { if } n=k!+k_{1}, k \text { and } k_{1} \text { even, } 0 \leq k_{1} \leq(k+1)!-1 \\
0 \text { if } n=k!+k_{1}, k \text { even, } k_{1} \text { odd and as above }
\end{array}\right.
$$

Then n or $n+1$ belongs to Q for every natural number n, so if δ and Δ denote the lower and upper density of \mathcal{R}, respectively, we have $\frac{1}{2} \leq \delta \leq \Delta \leq 1$. Now if $D(n)=\{x \leq n \mid x=T(y)$ for some $y\}$ then

$$
\frac{D((k+1)!-1)}{(k+1)!-1}=\frac{\frac{1}{2}((k+1)!-k!)-(k!-1-(k-1)!)-\cdots}{(k+1)!-1} \leq \frac{1}{2}+o(1)
$$

if k is even, and

$$
\frac{D((k+1)!-1)}{(k+1)!-1}=\frac{(k+1)!-k!-\frac{1}{2}(k!-1-(k-1)!)-\cdots}{(k+1)!-1} \geq 1+o(1)
$$

if k is odd. Hence, $\delta=\frac{1}{2}$ and $\Delta=1$. Therefore, even if $S(n)$ can take on only the values 0 and 1 , it is possible for R not to have density.

Let $b \geq 2$ be arbitrary and let $n=\sum_{j=0}^{k} d_{j} b^{j}$ be the unique representation of n in base b. Define $S(n)=\sum_{j=0}^{k} f\left(d_{j}, j\right)$, where $f(d, j)$ is a nonnegative integer-valued function of the digit d and the place where the digit occurs, and $T(n)=n+S(n)$. The consideration of functions of this form is motivated by the problem (which was posed in [1]) of showing that C is infinite when $T(n)=n+\sum_{j=0}^{k} d_{j}$. A solution, as given in [2], was obtained by recursively constructing an infinite sequence of integers in C for all bases b. It was also observed in [2] that if b is odd then $T(n)$ is always even. In fact, \mathbb{R} is precisely the set of all nonnegative even integers when b is odd. To see
this, observe that $n \equiv S(n)(\bmod b-1)$ and, therefore, $T(n) \equiv 2 S(n)(\bmod b-1)$ where $S(n)=\sum_{j=0}^{k} d_{j}$. Hence $T(n)$ is even if b is odd. Since $T(0)=0, T(n+1)$ $\leq T(n)+2$ for every natural number n, and $T(n) \rightarrow \infty$ as $n \rightarrow \infty$, the result is proved.

2. EXISTENCE AND COMPUTABILITY OF THE DENSITY

Again, letting $n=\sum_{j=0}^{k} d_{j} b^{j}, S(n)=\sum_{j=0}^{k} f\left(d_{j}, j\right)$, and $T(n)=n+S(n)$, we prove that the density of \mathbb{R} exists and is in fact computable when suitable hypotheses are placed on the function f. We will adhere to the following notation:

$$
\begin{aligned}
\Omega(k, r) & =\{T(x) \mid k \leq x \leq r\} \\
\Omega(r) & =\Omega(0, r) \\
D(k, r) & =|\Omega(k, r)| \\
D(r) & =|\Omega(r)| .
\end{aligned}
$$

Theorem 2.1: Let $f(d, j)(d=0,1, \ldots, b-1)$ be a family of nonnegative integer-valued functions satisfying
(a) $f(0, j)=0, j=0,1,2, \ldots$
(b) $f(d, j)=o\left(b^{j}\right), 1 \leq d \leq b-1$.

Then the density of Q exists.
Proof: First, we show that

$$
\begin{equation*}
D\left(d b^{k}, d b^{k}+r\right)=D(r), 0 \leq r \leq b^{k}-1,0 \leq d \leq b-1 \tag{2.2}
\end{equation*}
$$

To prove this, suppose that

$$
x=d b^{k}+\sum_{j=0}^{k-1} d_{j} b^{j} \text { and } y=d b^{k}+\sum_{j=0}^{k-1} d_{j} b^{j}
$$

Clearly $T(x)=T(y)$ if and only if

$$
T\left(\sum_{i=0}^{k-1} a_{j} b^{j}\right)=T\left(\sum_{j=0}^{k-1} a_{j}^{\prime} b^{j}\right)
$$

Now if $d_{k-1}=d_{k-2}=\cdots=d_{k-t}=0$ (or if $d_{k-1}^{\prime}=d_{k-2}^{\prime}=\cdots=d_{k-t}^{\prime}=0$), then, by assumption (a), we see that

$$
T\left(\sum_{j=0}^{k-t-1} d_{j} b^{j}\right)=T\left(\sum_{j=0}^{k-1} d_{j} b^{j}\right)=T\left(\sum_{j=0}^{k-1} d_{j}^{\prime} b^{j}\right)
$$

We therefore have a one-one correspondence between the elements of $\Omega\left(d b^{k}\right.$, $d b k+r)$ and $\Omega(r), 0 \leq r \leq b^{k}-1$, from which (2.2) follows. In particular, if $r=b^{k}-1$, we have

$$
\begin{equation*}
D\left(d b^{k},(d+1) b^{k}-1\right)=D\left(b^{k}-1\right) \tag{2.3}
\end{equation*}
$$

Our next lemma will enable us to relate $D\left(b^{k+1}-1\right)$ to

$$
\sum_{d=0}^{b-1} D\left(d b^{k},(d+1) b^{k}-1\right)
$$

Lemma 2.4: There exists an integer k_{0} such that for all $k \geq k_{0}$ the sets $\Omega\left(0, b^{k}-1\right), \Omega\left(b^{k}, 2 b^{k}-1\right), \ldots, \Omega\left((b-1) b^{k}, b^{k+1}-1\right)$ are pairwise disjoint, except possibly for adjacent pairs.

Proob: The maximum value of any element in $\Omega\left(d b^{k},(d+1) b^{k}-1\right)$ is at most $(d+1) b^{k}-1+M_{k}(k+1)$, where $M_{k}=\max \{f(d, j) \mid 0 \leq j \leq k\}$ and the minimum value of any element in $\Omega\left((d+2) b^{k},(d+3) b^{k}-1\right)$ is at least $(d+2) b^{k}$. Because of assumption (b), there exists k_{0}^{\prime} such that $f(d, j)<b^{j} / 2$ for all $j \geq k_{0}^{\prime}$ and there exists $k_{0} \geq k_{0}^{\prime}$ such that $f(d, j)<b^{j} / 2-M_{k_{0}^{\prime}}\left(k_{0}^{\prime}+1\right)$, whenever $k_{0} \geq k_{0}^{\prime}$, where

$$
M_{k_{0}^{\prime}}=\max \left\{f(d, j) \mid 0 \leq j \leq k_{0}^{\prime}\right\} .
$$

Therefore, $\sum_{j=0}^{k} f\left(d_{j}, j\right)=\sum_{j=0}^{k_{0}^{\prime}} f\left(d_{j}, j\right)+\sum_{j=k_{0}^{\prime}+1}^{k_{0}} f\left(d_{j}, j\right)+\sum_{j=k_{0}+1}^{k} f\left(d_{j}, j\right)$
$<M_{k_{0}^{\prime}}\left(k_{0}^{\prime}+1\right)+\sum_{j=k_{0}^{\prime}+1}^{k} b^{j} / 2-M_{k_{0}^{\prime}}\left(k_{0}^{\prime}+1\right)\left(k-k_{0}\right)$
$\leq \sum_{j=k_{0}^{\prime}+1}^{k} b^{j} / 2<b^{k}$ for all $k \geq k_{0}$,
so, in particular, $M_{k}(k+1)<b^{k}$. Hence,

$$
(d+1) b^{k}-1+M_{k}(k+1)<(d+2) b^{k}
$$

whenever $k \geq k_{0}$, which completes the proof of the lemma.
Now $D\left(b^{k+1}-1\right)=\sum_{d=0}^{b-1} D\left(d b^{k},(d+1) b^{k}-1\right)-Q$, where Q depends on the size of the intersections of the sets

$$
\Omega\left(0, b^{k}-1\right), \Omega\left(b^{k}, 2 b^{k}-1\right), \ldots, \Omega\left((b-1) b^{k}, b^{k+1}-1\right)
$$

Define
$\lambda_{d, k}=\left|\Omega\left(d b^{k},(d+1) b^{k}-1\right) \cap \Omega(d+1) b^{k},\left((d+2) b^{k}-1\right)\right|, 0 \leq d \leq b-2$. Using Lemma 2.4 and Equation (2.3), we obtain

$$
\begin{equation*}
D\left(b^{k+1}-1\right)=b D\left(b^{k}-1\right)-\sum_{d=0}^{b-1} \lambda_{d, k}, k \geq k_{0} \tag{2.5}
\end{equation*}
$$

Let

$$
A_{k}=D\left(b^{k}-1\right) / b^{k} \quad \text { and } \quad \varepsilon_{k}=\sum_{d=0}^{b-2} \lambda_{d, k} / b^{k+1}, k \geq k_{0} .
$$

Then 2.5 can be rewritten as

$$
A_{k+1}-A_{k}=-\varepsilon_{k}
$$

Therefore,

$$
\begin{aligned}
& A_{k+1}-A_{k}=-\varepsilon_{k} \\
& A_{k}-A_{k-1}=-\varepsilon_{k-1} \\
& \vdots \\
& A_{k_{0}+1}-A_{k_{0}}=-\varepsilon_{k_{0}}
\end{aligned}
$$

and by telescoping, we obtain

$$
A_{k+1}=A_{k_{0}}-\sum_{j=k_{0}}^{k} \varepsilon_{j}
$$

Replacing $k+1$ by k yields

$$
A_{k}=A_{k_{0}}-\sum_{j=k_{0}}^{k-1} \varepsilon_{j}, k \geq k_{0}
$$

Obvious1y, $1 / b^{k} \leq A_{k} \leq 1$ and $\sum_{j=k_{0}}^{k-1} \varepsilon_{j}=A_{k_{0}}-A_{k}<A_{k_{0}} \leq 1 . \quad$ Thus $\sum_{j=k_{0}}^{k} \varepsilon_{j}$ is a series of nonnegative terms bounded above by $A_{k_{0}}$, hence is convergent. Let

$$
\begin{equation*}
L=A_{k_{0}}-\sum_{j=k_{0}}^{\infty} \varepsilon_{j} \tag{2.7}
\end{equation*}
$$

(We have just shown that $0 \leq L \leq 1$). Then, (2.6) yields
i.e.,

$$
A_{k}=L+\sum_{j=k}^{\infty} \varepsilon_{j}, k \geq k_{0}
$$

$$
\begin{equation*}
A_{k}=L+o(1) \tag{2.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
D\left(b^{k}-1\right)=L b^{k}+o\left(b^{k}\right) . \tag{2.9}
\end{equation*}
$$

Using (2.3), (2.4), (2.9), and recalling the definition of the $\lambda_{d, k}$ and the ε_{k}, we have

$$
\begin{aligned}
D\left(d b^{k}-1\right) & =\sum_{c=0}^{d-1} D\left(c b^{k},(c+1) b^{k}-1\right)-\sum_{c=0}^{d-2} \lambda_{d, k} \\
& =\sum_{c=0}^{d-1}\left(L b^{k}+o\left(b^{k}\right)\right)+0\left(b^{k+1} \varepsilon_{k}\right)=d b^{k} L+o\left(b^{k}\right)
\end{aligned}
$$

$$
\begin{equation*}
D\left(d b^{k}-1\right)=d b^{k} L+o\left(b^{k}\right) \tag{2.10}
\end{equation*}
$$

Now let $n=\sum_{j=0}^{k} a_{j} b^{j}$ be any nonnegative integer. Then

$$
\begin{aligned}
D(n) & =D\left(\sum_{j=0}^{k} d_{j} b^{j}\right) \\
& =D\left(d_{k} b^{k}-1\right)+D\left(d_{k} b^{k}, \sum_{j=0}^{k} d_{j} b^{j}\right)-Q
\end{aligned}
$$

where Q is the number of elements that the sets

$$
\Omega\left(d_{k} b^{k}-1\right) \text { and } \Omega\left(d_{k} b^{k}, \sum_{j=0}^{k} d_{j} b^{j}\right)
$$

have in common. Therefore, if n is sufficiently large, then by using (2.10), (2.2), and the definition of the $\lambda_{d, k}$, we have

$$
D(n)=d_{k} b^{k} L+o\left(b^{k}\right)+D\left(\sum_{j=0}^{k-1} d_{j} b^{j}\right)+o\left(b^{k}\right)=d_{k} b^{k} L+D\left(\sum_{j=0}^{k-1} d_{j} b^{j}\right)+o\left(b^{k}\right) .
$$

Applying the same reasoning to the quantities $D\left(\sum_{j=0}^{t} d_{j} b^{j}\right), k_{0} \leq t \leq k-1$, we
eventually obtain
i.e.,

$$
D(n)=L\left(\sum_{j=k_{0}}^{k} a_{j} b^{j}\right)+D\left(\sum_{j=0}^{k_{0}-1} d_{j} b^{j}\right)+\sum_{j=k_{0}}^{k} o\left(b^{j}\right) ;
$$

$$
D(n)=L\left(n-\sum_{j=0}^{k_{0}-1} a_{j} b^{j}\right)+D\left(\sum_{j=0}^{k_{0}-1} a_{j} b^{j}\right)+o(n) .
$$

Dividing both sides of this equation by n yields

$$
D(n) / n=L+o(1)
$$

which proves the density of Q is L.
Remark: It should be noted that Equation (2.2), and therefore the above proof of Theorem 2.2, breaks down if we lift the condition $f(0, j)=0$.

A particular case of Theorem 2.1 of interest occurs when we assume that f depends only on d :

Corollary 2.11: If $f(d)$ is an arbitrary nonnegative function of $d, 1 \leq d$ $\leq b-1$, and $f(0)=0$, then the density of R exists and is equal to L, where L is defined as in Equation (2.7).

We also easily obtain the following two corollaries to Theorem 2.1:
Corollary 2.12: $L<1$ if and only if the function $T(n)$ is not one-one.
Proof: We have

$$
L=A_{k_{0}}-\sum_{j=k_{0}}^{\infty} \varepsilon_{j}=A_{k}-\sum_{j=k}^{\infty} \varepsilon_{j}, \text { for all } k \geq k_{0},
$$

where k_{0} is defined as in Lemma 2.4. If $T(x)=T(y), x \neq y$, and k is such that $k \geq k_{0}$ and $x \leq b^{k}-1, y \leq b^{k}-1$, then, since $A_{k}=D\left(b^{k}-1\right) / b^{k}$, it follows that $L \leq A_{k}<1$. If T is one-one, then it follows from the definition of the A_{k} and the ε_{k} that $A_{k}=1$ and $\varepsilon_{k}=0$ for all k, so $L=1$.

Corollary 2.13: If $f(d, j)=f(d)$ depends only on d and if $f(0)=0$ and $f(b-1) \neq 0$, then $L<1$.

Proob: Let $f(b-1)=s>0$. Then $T\left(b^{k}-1\right)=T\left((b-1) b^{k-1}+(b-1) b^{k-2}\right.$ $+\cdots+b-1)=b^{k}-1+k s$.

Now, if k is such that $k s-1-f(1)<b^{k}$ and $n=\sum_{j=0}^{r} d_{j} b^{j}$ satisfies $T(n)=$ $k s-1-f(1)$, then $n<b^{k}$ since $T(n) \geq n$. Hence $T\left(b^{k}+n\right)=T\left(b^{k}\right)+T(n)=$ $b^{k}+f(1)+k s-1-f(1)=b^{k}-1+k s=T\left(b^{k}-1\right)$. Therefore T is not oneone, so $L<1$ by the above corollary. If there is never any n which satisfies the equation $T(n)=k s-1-f(1)$, then almost all integers of the form $k s-1-f(1), k=1,2,3, \ldots$, do not belong to Q, hence, C has positive density, so $L<1$ in this case also.

Remark: The problem posed in [1] is now an immediate consequence of the above corollary.

More generally, it seems to be true that if $f(d)$ is not identically 0 and $f(0)=0$, then we again have $L<1$. We let this statement stand as a conjecture. Note that the hypothesis $f(0)=0$ is essential; for example, if f is any nonzero constant, then $T(n)$ is strictly increasing and therefore $L=1$.

There is another question which can be raised about the value of the density L : must one always have $L>0$ under the hypotheses of Theorem 2.1? Again, the proof of this result, if true, seems to be elusive. Since

$$
L=A_{k}-\sum_{j=k}^{\infty} \varepsilon_{j} \text { for } k \geq k_{0}
$$

we see that $L=0$ if and only if $A_{k}=O(1)$, which means that the function $T(n)$ must be very far from being one-one.

3. EXISTENCE OF THE DENSITY WHEN $f(a, j)=0\left(b^{j} / j^{2} \log ^{2} j\right)$

The main drawback to Theorem 2.1 is the condition $f(0, j)=0$. It seems to be difficult to prove that the density of Q exists if we assume only that $f(d, j)=o\left(b^{j}\right)$ for all digits d. On the other hand, it also seems to be difficult to find an example of an image set R which does not have density under the latter assumption on f, so that the statement that Q does have density under this assumption will be left as a conjecture. However, the following weaker result does hold:

Theorem 3.1: If $f(d, j)=0\left(b_{j} / j^{2} \log ^{2} j\right)$ for all d, then the density of Q exists.

Proof: Letting $n=\sum_{k=0}^{k} d_{j} b^{j}$, we have

$$
\begin{equation*}
S(n)=\sum_{j=0}^{k j=0} 0\left(b^{j} / j^{2} \log ^{2} j\right)=0\left(b^{k} / k^{2} \log ^{2} k\right) \tag{3.2}
\end{equation*}
$$

Now if $r \leq s \leq t(r<t)$ and $s<b^{k+1}$, then, letting D and Ω be the same as in the proof of Theorem 2.1, we see that

$$
D(r, t)=D(r, s)+D(s+1, t)-|\Omega(r, s) \cap \Omega(s+1, t)|
$$

Hence, by (3.2),

$$
\begin{equation*}
D(r, t)=D(r, s)+D(s+1, t)+0\left(b^{k} / k^{2} \log ^{2} k\right) . \tag{3.3}
\end{equation*}
$$

In particulr, if $r=0, s=b^{k-1}-1$, and $t=b^{k}-1$, then
$D\left(b^{k}-1\right)=D\left(0, b^{k-1}-1\right)+D\left(b^{k-1}, b^{k}-1\right)+0\left(b^{k-1} /(k-1)^{2} \log ^{2}(k-1)\right)$.
Similarly, we see that
$D\left(b^{q}-1\right)=D\left(0, b^{q-1}-1\right)+D\left(b^{q-1}, b^{q}-1\right)+0\left(b^{q-1} /(q-1)^{2} \log ^{2}(q-1)\right)$,

$$
1 \leq q \leq k-1
$$

Using the two latter equations and (3.2), we obtain

$$
\begin{align*}
D\left(b^{k}-1\right)=D(0) & +D(1, b-1)+\cdots+D\left(b^{q-1}, b^{q}-1\right) \tag{3.4}\\
& +\cdots+D\left(b^{k-1}, b^{k}-1\right)+0\left(b^{k} / k^{2} \log ^{2} k\right) .
\end{align*}
$$

Let us now consider the quantity $D\left(d b^{k},(d+1) b^{k}-1\right)$. From (3.3), we have

$$
\begin{aligned}
D\left(d b^{k},(a\right. & \left.+1) b^{k}-1\right)=D\left(d b^{k}, d b^{k}\right)+D\left(d b^{k}+1, d b^{k}+b-1\right) \\
& +D\left(d b^{k}+b,(a+1) b^{k}-1\right)+0\left(b^{k} / k^{2} \log ^{2} k\right) .
\end{aligned}
$$

A second application of (3.3) yields

$$
\begin{aligned}
D\left(d b^{k},(d\right. & \left.+1) b^{k}-1\right)=D\left(d b^{k}, d b^{k}\right)+D\left(d b^{k}+1, d b^{k}+b-1\right) \\
& +D\left(d b^{k}+b, d b^{k}+b^{2}-1\right)+D\left(d b^{k}+b^{2},(d+1) b^{k}-1\right) \\
& +0\left(b^{k} / k^{2} 1 \log ^{2} k\right)
\end{aligned}
$$

and by repeatedly applying (3.3), we eventually obtain

$$
\begin{align*}
D\left(d b^{k},(d\right. & \left.+1) b^{k}-1\right)=D\left(d b^{k}, d b^{k}\right)+D\left(d b^{k}+1, d b^{k}+b-1\right) \tag{3.5}\\
& +\cdots+D\left(d b^{k}+b^{q}, d b^{k}+b^{q+1}-1\right) \\
& +\cdots+D\left(d b^{k}+b^{k-1}, d b^{k}+b^{k}-1\right)+0\left(b^{k} / k \log ^{2} k\right) .
\end{align*}
$$

Since all integers x satisfying

$$
d b^{k}+b^{q} \leq x \leq d b^{k}+b^{q+1}-1 \quad(0 \leq q \leq k-1)
$$

have the same number of leading zeros, there is a one-one correspondence between the elements of $\Omega\left(d b^{k}+b^{q}, d b^{k}+b^{q+1}-1\right)$ and $\Omega\left(b^{q}, b^{q+1}-1\right)$, i.e.,

$$
D\left(d b^{k}+b^{q}, d b^{k}+b^{q+1}-1\right)=D\left(b^{q}, b^{q+1}-1\right) .
$$

Using this fact, (3.5) becomes

$$
\begin{align*}
D\left(d b^{k},(d\right. & \left.+1) b^{k}-1\right)=D(0)+D(1, b-1) \tag{3.6}\\
& +\cdots+D\left(b^{k-1}, b^{k}-1\right)+0\left(b^{k} / k \log ^{2} k\right)
\end{align*}
$$

and (3.4) and (3.6) imply that

$$
\begin{equation*}
D\left(d b^{k},(d+1) b^{k}-1\right)=D\left(b^{k}-1\right)+0\left(b^{k} / k \log ^{2} k\right) \tag{3.7}
\end{equation*}
$$

Now, from (3.7),

$$
\begin{aligned}
D\left(b^{k+1}-1\right)= & D\left(b^{k}-1\right)+D\left(b^{k}, b^{k+1}-1\right)+0\left(b^{k} / k^{2} \log ^{2} k\right) \\
= & D\left(b^{k}-1\right)+D\left(b^{k}, 2 b^{k}-1\right)+D\left(2 b^{k}, b^{k+1}-1\right) \\
& +0\left(b^{k} / k^{2} \log ^{2} k\right) \\
= & 2 D\left(b^{k}-1\right)+D\left(2 b^{k}, b^{k+1}-1\right)+0\left(b^{k} / k \log ^{2} k\right) .
\end{aligned}
$$

By repeated application of (3.7), we have

$$
\begin{equation*}
D\left(b^{k+1}-1\right)=b D\left(b^{k}-1\right)+0\left(b^{k} / k \log ^{2} k\right) \tag{3.8}
\end{equation*}
$$

Letting $A_{k}=D\left(b^{k}-1\right) / b^{k}$, (3.8) becomes

$$
b^{k+1} A_{k+1}-b^{k+1} A_{k}=0\left(b^{k} / k \log ^{2} k\right)
$$

and therefore

$$
A_{k+1}-A_{k}=0\left(1 / k \log ^{2} k\right)
$$

Since $\sum_{j=0}^{k} 0\left(1 / j \log ^{2} j\right)=0(1 / \log k)$, there exists a constant L such that

$$
\begin{equation*}
A_{k}=L+0(1 / \log k) \tag{3.9}
\end{equation*}
$$

Let $n=d_{k_{1}} b^{k_{1}}+d_{k_{2}} b^{k_{2}}+\cdots$ be any integer, each $d_{k_{j}} \neq 0$. Then

$$
D(n)=D\left(d_{k_{1}} b^{k_{1}}-1\right)+D\left(d_{k_{1}} b^{k_{1}}, n\right)+0\left(b^{k_{1}} / k_{1}^{2} \log ^{2} k_{1}\right)
$$

By the same reasoning used to obtain (3.8), we see that

$$
D\left(d_{k_{1}} b^{k_{1}}-1\right)=d_{k_{1}} D\left(b^{k_{1}}-1\right)+0\left(b^{k_{1}} / k_{1} \log ^{2} k_{1}\right)
$$

Therefore, by (3.9), we have

$$
\begin{aligned}
D(n)=d_{k_{1}} b^{k_{1}}(L & \left.+0\left(1 / \log k_{1}\right)\right)+0\left(b^{k_{1}} / k_{1} \log ^{2} k_{1}\right) \\
& +D\left(d_{k_{1}} b^{k_{1}}, d_{k_{1}} b^{k_{1}}+d_{k_{2}} b^{k_{2}}+\cdots\right) .
\end{aligned}
$$

Since $d_{k_{j}} \neq 0$ for any j, we know that

$$
D\left(d_{k_{1}} b^{k_{1}}, d_{k_{1}} b^{k_{1}}+d_{k_{2}} b^{k_{2}}+\cdots\right)=D\left(d_{k_{2}} b^{k_{2}}+\cdots\right)
$$

[c.f. the reasoning applied between equations (3.5) and (3.6)]. Hence,

$$
D(n)=d_{k_{1}} b^{k_{1}}\left(L+0\left(1 / \log k_{1}\right)\right)+0\left(b^{k_{1}} / k_{1} \log ^{2} k_{1}\right)+D\left(d_{k_{2}} b^{k_{2}}+\cdots\right)
$$

Continuing in this manner, we have

$$
D(n)=n L+0\left(b^{k_{1}} / k_{1} \log ^{2} k_{1}\right)+\sum_{j=0}^{k_{1}} 0\left(b^{j} / \log j\right)=n L+0\left(b^{k_{1}} / \log k_{1}\right) .
$$

This last equation shows that the density of \mathbb{R} is L, q.e.d.
Remark I: This theorem, in contrast to Theorem 2.1, has the drawback that no formula for the density of Q has been derived.

Remark II: It is interesting to note that there exist sets \mathbb{R} which do not have density under the assumption that $f(d, j)=0\left(b^{j}\right)$. For example, let $f(d, j)=0$ if j is even and $f(d, j)=b^{j}$ if j is odd. Evidently,

$$
T\left(b^{k}+\sum_{j=0}^{k-1} a_{j} b^{j}\right)=b^{k}+\sum_{j=0}^{k-1} a_{j} b^{j}+b^{k}+b^{k-2}+\cdots+b \geq 2 b^{k}
$$

if k is odd, and

$$
T\left(b^{k}+\sum_{j=0}^{k-1} a_{j} b^{j}\right)=b^{k}+\sum_{j=0}^{k-1} a_{j} b^{j}+b^{k-1}+b^{k-3}+\cdots+b
$$

if k is even.

Therefore, the number of integers between b^{k} and $2 b^{k}$ in Q if k is odd is at most $1+b^{k-2}+b^{k-4}+\cdots+b$, and the number of integers between b^{k} and $2 b^{k}$ in \mathscr{R} if k is even is at least $b^{k}-b^{k-1}-b^{k-3}-\cdots-b$. Hence, if we let. δ and Δ denote the lower and upper density of R, respectively, we see that

$$
\delta \leq 1 / b^{2}+1 / b^{4}+1 / b^{6}+\cdots=1 /\left(b^{2}-1\right)
$$

and

$$
\Delta \geq 1-1 / b-1 / b^{3}-1 / b^{5}-\cdots=1-b /\left(b^{2}-1\right) .
$$

Since $1-b /\left(b^{2}-1\right)>1 /\left(b^{2}-1\right)$ when $b>2$, it follows that Q does not have density if $b \neq 2$.

It is also interesting that we can obtain examples in which the set \mathbb{R} is of density 0 if $f(d, j)=0\left(b^{j}\right)$. For example, if $b=10$ and $f(d, j)=0$ if $d \neq 1$ and $f(d, j)=8 \cdot 10^{j}$ if $d=1$, then no member of Q has a 1 anywhere in its decimal representation, and the set

$$
n=\left\{\sum_{j=0}^{k} d_{j} 10^{j}, d_{j} \neq 1,0 \leq j \leq k\right\}
$$

is a set which is well known to have density 0.
Corollary 3.10: If $f(d)$ is an arbitrary nonnegative function of the digit d, then the density of Q exists.

ACKNOWLEDGMENT

The author wishes to thank her thesis advisor, Professor Eugene Levine, of Adelphi University, for the guidance received from him during the preparation of this work.

REFERENCES

1. "Problem E 2408," proposed by Bernardo Racomon, American Math. Monthly, Vol. 80, No. 4 (April 1973), p. 434.
2. "Solution to Problem E 2408," American Math. Monthly, Vol. 81, No. 4 (April 1974), p. 407.
