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1. INTRODUCTION 

The purpose of this paper is to relate certain matrices with integer en-
tries to convolutions of arithmetic functions. 

Let n be a positive integer, let a, 3, and y be arithmetic functions (com-
plex-valued functions with domain the set of positive integers), and let ari 
denote the 1 x n matrix [a(l) a(2) ... a(n)]. 

We define the n x n divisor matrix Dn = (d^) by di 1 if i\j, di 
otherwise. Both Dn and its inverse, Dn , are upper triangular matrices. The 
arithmetic functions Vk, a, and e are defined by Vk(n) = nk for k = 0, 1, 2, 

o(n) = 2 ^ , and e(n) = 1 if n = 1, e(n) = 0 if n > 1. We also consider the 
d\n 

divisor function T, the Moebius function y, and Euler's ^-function. We ob-
serve that 

;0[n] D 

}l[n]> 

T[n] 

0[n] 

^[nl^'n1 = P[n] > 

;i[n]^n }[n]' 

(1) 

(2) 

(3) 

(4) 

These matrix formulas, which can be used to evaluate arithmetic functions as 
in [2], are consequences of the following equations which involve the Diri-
chlet convolution, *D . 

V 0 * D V 0 = T > 

e*Dy = y, 

v ^ y = <|>, 

PVo 

)*nVn 

As an illustration, consider matrices D6 and D~s which appear below. 
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Any omitted entry is assumed to be zero. By (2), 

[ 1 2 3 4 5 6]DS = [a(l) a(2) a(3) a(4) a(5) a ( 6 ) ] , 

so that 0(6) = Y*d = Y,Vl(d) = (v^pV,,) (6) . And by (4) , 
d\6 d\6 

[ 1 2 3 4 5 6W;1 = [c()(l) cj)(2) (f)(3) (f)(4) (f)(5) (f)(6)], 

so that (f)(6) = 1 - 2 - 3 + 6 = (v1*2?y)(6). 
These observations lead us to define and illustrate matrix-generated con-

volutions. 

2. MATRIX-GENERATED CONVOLUTIONS 

Suppose that G = (g^) is an infinite dimentional (0, 1)-matrix with g.> = 
1 if v - j and g^. = 0 if i > j, and that the l's in column n of G appear in 
rows nl5 n2, ..., nk (n1 < n2 < ... < nk = n). We say that £ generates the 
convolution *G defined by 

k 

(a*G$)(n) = ̂ ]^(ny)3(nk+1^y), n = 1, 2, 3, .... 

Clearly, *G is a commutative operation on the set of arithmetic functions. 
We denote by Gn the n x n submatrix of G = (ĝ  • ) with 1 ̂  i <^ n, 1 < j < n. 

The convolutions in Examples 1-4 below are defined and referenced in [3], 

Example, 1: The matrix Z? = (d^) , with d^ = 1 if £|j, dij • = 0 otherwise, 
generates the Dirichlet convolution *D. Dn is the n x n divisor matrix, and 
the set {nl9 n2, ..., nk) is the set of positive divisors of n. 

Example, 2: The unitary convolution is generated by the matrix U = (u^) 
with uij = 1 if i <L j and i|j and i and j/i are relatively prime, w^- = 0 
otherwise. 

Example, 3: The matrix C = (c^-) defined by c^ = 1 if t i j , ĉ - = 0 
otherwise, generates a convolution *£ related to the Cauchy product. Since 
{nl9 n29 •••> n k } = {I? 2, ..., n}, we have 

(a*c3)(n) = a(l)3(n) + a(2)B(n - 1) + • • • + a(n)B(l). 

Example, 4: For a fixed prime p, let the matrix L = (l^) be defined by 
lic- = 1 if i 1 j and p -f f . _ j, Z^ = 0 otherwise. The convolution ±L gen-
erated by L is related to the Lucas product. The entries shown in the matrix 
Llh for p = 3 are easily determined by the use of a basis representation cri-
terion given in [1]. 
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3. A GENERAL MOEBIUS FUNCTION 

In view of (3 ') , we next define a general Moebius function \iQ by VQ*G\lG 
e. It is immediate from G^lGn = In (the n x n identity matrix) that 

if G'^ig..) then 
^j 1iQ y(j) for j = 1,2, ..., n and n = 1, 2, 3, ... (5) 

For example, the elements in row one of D~s
l are yD(l) = y(l)3 y(2), . ,.,y(6) 

(in that order). The values of the unitary, Cauchy, and Lucas Moebius func-
tions given in [3] agree with corresponding entries in row one of Un, Cn9 and 
Ln, respectively. Property (5) implies e^^G'1 = yGj-n], which is a general-
ization of (3). 

The following three properties are related to the Moebius function and are 
stated for future reference. 

a*re = a for all arithmetic functions a. (6) 

*G is an associative operation on the set of arithmetic functions. (7) 

If gi5 = 0 then g^ = 0, where G~l = (#. .), n = 1, 2, 3, ... . (8) 

Property (6) is equivalent to 

0U 1 for j = 1, 2, 3, ... (6') 

For (6f) clearly implies (6); and if gln = 0 for some n, and a is such that 
a(n) i 0, then (a*Ge)(n) = 0 + a(n). 

ExampZz 5: Let the matrix P = (p^ ) be defined by p.. = 1 if i i j and i 
and Q are of the same parity, p.. = 0 otherwise. Evidently, (6f) and (6) do 
not hold here. For example, (v0*Pe)(2) =v0(2)e(2) = 0 ^ V0 (2). Although e', 
defined by ef(l) = e'(2) = 1, er(n) = 0 if n > 2, satisfies a*PeT = a for all 
arithmetic functions a, ef is not related to matrix multiplication in G~n

lGn = 
In in the desirable way that E is. 

We note that if (6) and (7) hold then we can apply Moebius inversion in 
the form a = V0*G3 iff 3 = ]iG*Ga> [as illustrated in (4')]- It is clear that 
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(6) holds and well known that (7) holds for the convolutions in Examples 1-4; 
so (8) holds as well, as can be verified by direct computation or by applica-
tion of the following theorem. 

Tkzotim 7: Property (7) implies property (8). 

VKOO^\ Assume that (8) is false. Let j be the smallest positive integer 
such that for some £ we have -g.. = 0 and #".. ^ 0; let this j = n. Consider 
the largest value of i such that gin - 0 and ~gin ^ 0; let this i = t . It 
follows by the assumptions and GnG^1 - In that gtt - 1, gtn = 0, ~gtn ^ 0, 
there is an integer r such that t < v < n and gt = 1, and grn = 1. Since 
v e {n19 ..., n^} and gtT = 1, then a(t) is a factor in some term of 

((a*G3)*GY)(n). 

But no term of (a*c(3*cY)) (n) -.has a factor a(t) because t £ {n19 ..., 7^}. 
Therefore, (7) is false and the proof is complete. B 

k. THE MAIN THEOREM 

We now define some special functions and matrices leading to the main re-
sult in this paper. Assume that the matrix G generates the convolution *G 

and define the arithmetic functions A and B by 
n n 

AW =J2gina(i) and B(n) = iC^n&W-
i - 1 i m 1 

Then for n = 1, 2, 3, ..., we have 

and 

3[n]^;1 = B[n]. (10) 
Define G^ = (s^-) to be the n x n matrix with Sij =1 if i = ny and j =nk + l_v9 
V = 1, 2, . .. , fc, ŝ - = 0 otherwise. Note that G% is a symmetric (0, l)-matrix 
with at most one nonzero entry in any row or column. If Mt denotes the trans-
pose of a matrix M, then 

and 
(a*cB)(n) = a[ n ]^(0[ n])t (11) 

(A*GB)(n) = A[n]£*(B[n])*. (12) 

The matrix GnG„ is of special interest and can be characterized as follows. 
Column nv of GnG^ equals column nk+l_v of Gn, for v - 1, 2, ..., k; 

the other columns (if any) of GnG% are zero columns. (13) 

Although GnG„ is symmetric (for all positive integers n) for the matrices de-
fined in Examples 1-5, GnG% is not symmetric for Gn = E3 given below. 
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ThdOtim 2: The matrix GnGs
n is symmetric for n = 1, 2, 3, ...if and only 

if (a*GB) (n) = (A*GB) (n) for all arithmetic functions a and 3, and for all 
positive integers n. 

Vtioohi 

1. Assume that GnG% is symmetric for n = 1, 2, 3, ... . This and the sym-
yS\t metry of G* imply t h a t (GnG%y = Gn(G*y . In view of ( 9 ) , ( 1 0 ) , ( 1 1 ) , 

and ( 1 2 ) , we have 

(4* c B)(n) = A[n]Gs
n{B[n]y 

= 01[n]Gr
n(?^(3[n]G;

n
1) 

= 0 [ » ] ^ ( 3 I B ] ) * 

= (a* G |3 ) (n ) , n = 1 , 2 , 3 , . . . . 

2. Assume that there is a positive integer n such that GnG% is not sym-
metric. Then GnG„ ± (G„ffn)* implies that GnG^Gn1)* 5s <?£ and that 
04*cS)(n) = a[n]GnGn

s(^1)t(B[n])* and (a*G6)(w) are not identically 
equal. Therefore, there exist arithmetic functions a and 3 such that 

(A*GB)(n) + (a*G3)(n). 

This completes the proof of the theorem. 11 

Next, we give an application of this theorem. 

ExampZz 6: Since PnP„ is symmetric for n = 1, 2, 3, ... for P in Example 
5, we can apply Theorem 2 with n - It - 1 (for t a positive integer), a = Vx, 
3(2^-1) = k for fc = 1, 2, ..., t, to obtain the identity 

t t 

k = i k = i 

which can be expressed in the form 

t t - i 

fc«l fc-l 

5. A GENERAL EULER FUNCTION 

Assume that the matrix G generates the convolution *G . In §3, we defined 
a general Moebius function ]iG and obtained a generalization of (3). In this 
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section, we define a general Euler function $G for G such that *G satisfies 
(6) and (7), and derive a generalization of (4). 

First, we consider the property 

GnG„ is symmetric for n = 1, 2, 3, ... (14) 

and some preliminary theorems. 

Th&OJiQJM'• 3: Property (7) implies Property (14). 

VKOO^i Assume that GnG„ = (h^) is not symmetric. 

C<X6£ 7: Suppose that column w of GnG„ is a zero column and that hwq = 1 
for some q e {l, 2, . .., n}. By (13), gwn = 0 and q e {n1 , . . . , n^}; say q = 
nk+i-t- T h e n 3 W =1 = gntn = gntnt and ((a*G3)*Gy) (n) has a term with fac-
tor a(w); but (ou^g^y)) (n) has no term with factor a(w) and (7) is false. 

CaAd 2: Suppose that hn8rlp= 0 and hnrna = 1, where ns and nv belong to 
{nl9 ..., nk). Then ^n.nk+1.r = 0, 9nrnk+1-B

 = 1' and ^„fln = 1 = gnpn. There-
fore, (a*Gg) (nk+ x_ e )y(ns) has a term with factors a(nr) and y(ns), but 
a(nr) (3%Y) (W/£ + 1_ r) has no term with a y(ns) factor. Again, (7) is false. B 

Th&OSim 4: Property (1.4) implies Property (8). 

VJIOQ^I Assume that (8) is false and let t and r be defined as in the 
proof of Theorem 1. Column t of GnG^ is a zero column (since gtn = 0 ) ; but 
a 1 entry appears in row t of GnG% (because gtv - 1 = grn) , so that GnGn is 
not symmetric. H 

We note that (7) implies (8) and (14) , and that (14) implies (8) ; there are 
no other implications among the properties (6), (7), (8), and (14) (as will 
be shown in §5). 

It follows from (9) that A = V0*Ga. If G and *G satisfy (6) and (7), then 
(by Theorems 3 and 2) we have (a*GB) (n) = (a*GV0*GB) (n) for all arithmetic 
functions a and @ and for n - 1,2, 3, ... . Therefore, we have 

3(n) = (v0*GB)(n); 
and 

B(n) = <B*tfUG)(n) (15) 

for all arithmetic functions 3 and for n = 1, 2, 3, ... follows by Moebius 
inversion. 

TktOtim 5: If properties (6) and (7) hold for G and *G , then 

Wnvn == yG0*k+l-y)> V = 1, 2, ..., k. 

Vh,00^\ Define the arithmetic functions gy, y = 1, 2, ..., fc, by $y(n) = 1 
if n = ny, 3y(w) = 0 otherwise. Property (15) implies that 

n k 

S3(i)^n = £s<W|>)M*fc + l-t>> (16) 
i = 1 v • 1 
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for all arithmetic functions 6 and for n = 1, 2, 3, ... . Let G = *G in (16) 
to obtain ~gn n = Uo^k + i-v) I this is valid for £> = 1, 2, . . . , & . • 

For £ and *G which satisfy (6) and (7) we define the general Euler func-
tion $G by <\>G = Vi*GUG> We can now generalize (4). 

TkzofL&m 6: If G and *G satisfy (6) and (7), then V^-jG"1 = $G[n]' 

Vh.00^1 This is a direct consequence of Theorem 5 and Property (8) (which 
follow from (6), (7), and Theorems 3 and 4). • 

Other general functions such as TG and 0G can be defined analogously. 

6. REMARKS 

First, we show that there are no implications among properties (6), (7), 
(8), and (14) except (7) implies (8) and (14), and (14) implies (8). If R5 
is as shown and R = (r^j ) is defined for £ > 5 and J > 5 by r^- = 1 if £ = j 
or £ = 1, 2»̂  • = 0 otherwise, then R satisfies (6) but not (7), (8), and (14). 
The matrix P defined in 

1 1 
0 0 
1 1 

1 
Mr 

Example 5 satisfies (7), (8), and (14) but not (6). A matrix M = {m^) which 
satisfies (8) but not (7) and (14) can be defined for i>5 and J >5 by m 
if £ = J, m^ =0 otherwise, with M5 as shown. 
is defined for i > 10 and J > 10 by k^ = 1 if 
(14) holds, but (7) is false since, for example, 

If K10 is as shown and K = (k^-) 
t = J 5 &£i = 0 otherwise, then 

((V1*XV 1)*J CV 0)(10) + (v1*x(v1*^v0))(10). 
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Properties (6), (7), (8), and (14) all hold for the matrices (and generated 
convolutions) in Examples 1-4 as well as for those defined in our concluding 
example. 
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Example, 7: Let F = { l , 2, 3, 5, 8, .. . } be the set of positive ̂Fibonacci 
numbers. Define F = (fij) by f^ = 1 if i = j or if i < j and ieF, f^ - 0 
otherwise. F can be replaced by any finite or infinite set of positive inte-
gers which includes 1, and properties (6), (7), (8), and (14) will be satis-
fied. If F is replaced by the set of all positive integers, we obtain the 
matrix C in Example 3. 
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