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A sequence of sequences Sk which arise from inverses of matrices contain-
ing certain columns of Pascalfs triangle provided a fruitful study reported 
by Hoggatt and Bicknell [1], [2], [3], [4]. The sequence S1 = {l, 1, 2, 5, 14, 
42, .. . } is the sequence of Catalan numbers. Convolution arrays for these 
sequences were computed, leading to classes of combinatorial and determinant 
identities and a web of inter-relationships between the sequences Sk. The 
inter-relationships of the generating functions of these related sequences 
led to the ̂ -convolution transform of Hoggatt and Bruckman [5], which provided 
proof of all the earlier results taken together as well as generalizing to 
any convolution array. The development required computations with infinite 
matrices by means of the generating functions Sk(x) for the columns containing 
the sequences Sk . In this paper, properties of the generating functions Sk (x) 
are studied and extended. 

1. INTRODUCTION 

We define S^(x) as in Hoggatt and Bruckman [5], Let f(x) be the generating 
function for a sequence {f^} so that 

where f(0) ~ f0 = aQ0 + 0 and 

[/0r)]J' + 1 = £ X J ^ > ^ = °> ±ls ± 2> ± 3 > ••• (1'2) 

i = 0 

where aii_l = 1 if i = 0 and &it_l = 0 if i £ 0. Form a new sequence with 
generating function Sx(x) given by 

s^x) = S TTixi =T<SiXi' (1-3) 

i=0 i=0 
where {cia} was generated in the convolution array by f(x) as in (1.2). Then 
if we let f(x) = SQ(x)5 from [5] we have f(xS1(x)) = S1(x)9 

f(xSk(x)) = Sk(x) (1.4) 
and 

f(xS*(x)) = Sk(x), (1.5) 

289 



290 PROPERTIES OF GENERATING FUNCTIONS OF A CONVOLUTION ARRAY [Aug. 

as well as 
00 

4w = LHVT"*.*<+*-!*** k = ° ' v> 2> ••• (1-6) 

i = o d 

In particular, if f(x) = 1/(1 - x), we have the generating functions for 
the columns of Pascal's triangle and the sequences Sk axe. the Catalan and re-
lated sequences reported in [1], [2], [3], [4] , and aitki+ . _1 is the binomial 

( T, J. The sequence generated by Sk(x) is the (j - l)st convo-
lution of the sequence Sk. The sequence Sk is formed by taking the absolute 
values of the elements of the first column of the matrix inverse of a matrix 
Pk, where Pk is formed by placing every (k + l)st column of Pascal's triangle 
on and below the main diagonal, with zeroes elsewhere. PQ is PascalTs trian-
gle itself, and Px contains every other column of Pascal's triangle and gives 
the Catalan numbers ,1, 1, 2, 5, 14, 42, . . . , as the sequence Sx. 

We now discuss properties of the generating functions Sk(x). 

2. THE GENERATING FUNCTIONS Sk(x) 

We begin with 

f{xS(x)) = S(x) (2.1) 

by assuming that f(x) is analytic about x - 0 and f(0) =1. We also note that 
S(x) $ 0 for finite x9 since S(x) = 0 would violate f(0) = 1. 

ThdOtim 2. J: If f(xS(x)) = 5(a), then S(x/f(x)) = f(x). 

FlOO^i Note that f(x) + 0 for finite a. Let y = xS{x) so that f(y) = S(x) 
and x = y/S(x) = y/f(y). Therefore, f(y) = S(y/f(y)). Changing to x we get 
S(x/f(x)) = /(a). 

IkdOKQM 1.1\ If S(x/f(x)) = /(a), then /(o:5(x)) = 5 (a?). 

Vtioofai Let 2/ = x/f(x). Then 5Q/) = f(x), x = yf(x) = yS(y) which implies 
AySiy)) = fix) = S{y) so that f{xS(x)) = 5(a). 

JhzofiQjm 2.3: The solution to f(xS(x)) = 5(a) is unique. 

P/LOÔ : Assume /(a5(a)) = S(x) and f(xT(x)) = T(a). We shall show that 
T(x) = S(x). By Theorem 2.1, S(x/f(x)) = f{x). Let x = a^(a) so that 

S(xT(x))/f(xT(x)) = S(xT(x)/T(x)) =S(x). 

But also 

S(xT(x))/f(xT(x)) = /(aT(a)) = T(x). 

Thus, 5(a) = T(x). 

Thzo/im 2.4: In S(x/f(x)) = / ( a ) , /(a) is unique. 
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Pswofi: Assume S(x/f(x)) = f(x) and S(x/g(x)) = g(x). Apply Theorem 2.1, 
S(x) = f(xS(x)) , letting x = x/g(x). Then S(x/g(x)) becomes 

S(x/g(x)) = f[(x/g(x))S(x/g(x))] = f[{x/g(x)) * g(x)] = f(x), 

but S(x/g(x)) = g(x) so that /(a;) = g(x). 

3. THE GENERATING FUNCTIONS Sk(x) WHERE £0(a:) GENERATES PASCAL'S TRIANGLE 

We now go on to another phase of this problem. Let 

S0(x) = ~r^= fix) (3.1) 

and S0(xS1(x)) = S1(x) be the unique solution, and from S'1(a;/50 (a;)) " Sx (x), 
when x = 0 we have S1(,0) = S0(0) = 1. From 

Sk(xSk+1(x)) = Sk+1(x) (3.2) 

one can easily prove 

S0(xS£(x)) = 5fc(a?) (3.3) 

for all integral k as in Hoggatt and Bruckman [5], 
Thus from SQ(x) = 1/(1 - x) 9 we have 

SQ(xS*(x)) = 1 = Sk(x) 
1 - xS*(x) 

xs\ + 1(x) - Sk(x) + 1 = 0, k > 0, 

and from 

1 - x/S2k(x) 

xSZk
k*l(x) - S.k(x) + 1 = 0, k >_ 0. 

Clearly, ̂ (arSJJfcc)) = S0(x). Thus, uniformly 

a?££ + 1(a0 - Sk(x) + 1 = 0 (3.4) 

for all integral k. 
In particular, by (3.4), 

xS\{x) - Sx(x) + 1 = 0, 

s,« = ̂ 4 ^ 
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Clearly, Si(x) is undefined for x > 1/4. The solution with the positive radi-
cal is unbounded at the origin, while 

is bounded at the origin, and limit Sx (x) = 1. Sx (x) is the generating func-

tion for the Catalan numbers. Note that sAxS2(x)\ = S2(x) leads to 

1 -Vl - bxS2(x) 
S2(x) = -

2xS2(x) 

defined for xS2 (x) < 1/4, where limit xS2 (x) = 0 while S2(x) + 0 for any x. 

We now proceed to the proof that 

zSk(z) - S(z) + 1 = 0 

has only one continuous bounded function in the neighborhood of the origin. 
We first need a theorem given by Morris Marden [6, p. 3, Theorem (1.4)]: 

lhd0h,2M\ The zeroes of a polynomial are continuous functions of the co-
efficients. 

TkdOAdm 3.1: There is one and only one continuous solution to 

zSk(z) - S(z) + 1 = 0 

which is bounded in the neighborhood of the origin, and this solution is such 
that limit S(x) = 1. 

x-*- 0 

Vh.00^\ Let S$(z), S£(z), ..., Sfc(z) be the continuous zeroes (solutions) 
to zSk{z) - S(z) + 1 = 0, and rewrite this as 

Sk(z) - S(z)/z + 1/z = 0, z + 0. 

(S - S*)(S - S*) ... (S - S*) = Sk - S/z + 1/z = 0. 

Therefore, S*S*S* ... Sfc = (-l)k/z as the last coefficient, and 

sppi... s*(j!+jl+jl+..-+±y (.1)*/* 
from the next-to-last coefficient. Therefore, 

~qW """ ~QW "*" qX + • • • + q,̂  = 1. (3. J) 

Let S$(z) be bounded in the neighborhood; then 

limit (zS*\z) - S*(z) + l) = limit zSf(z) - limitSfGO + 1 = 0, 
3+ 0 \ l I 3 + 0 l Z + 0 L 
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limit zS\(z) = 0, and limit SUz) = S*(0) = 1. Thus limit 1/5?(s) = 1. 

Suppose S*(z) is continuous but unbounded in the neighborhood of z = 0. 
Then limit 1/SHz) = 0. From (3.5), we therefore conclude that S*(z) is the 

2 + 0 "̂  J-

only continuous and bounded solution to our equation as z ->- 0. We also note 
that since the right side is indeed 1 for all z ^ 0, there is one bounded 
solution. This concludes the proof of Theorem 3.1. 

TktoJwn 3.2: S_m(x) = - — ^ — ^ . 

VHjOOi'. S_m(x) satisfies 

xSZT\x) - S_m(x) +1 = 0. 

Multiply through by S_m(x) to yield 

xSZm
m(.x) - 1 + Sl\(x) = 0. 

Replace a; by (-x) , 

-saSC"(-x) - 1 + SZli-x) = 0, 

which can be rewritten as 

x(s:l
m(-xy)m - {s:l

n(-x)) + i = o. 
This is precisely the polynomial equation satisfied by Sm _ ±(x), which is 

xSl.^x) - ^.xCx) + 1 = 0. 

Since Sm.1(0) = 1 , it is the unique continuous solution which is bounded in 
the neighborhood of the origin. If S.m(x) is such that 

limit S_m(x) = S-m(0) = 1, 
x -*• 0 

then 

limit silix) = s:Uo) = i. 
x -*• 0 

Therefore, by Theorem 3.1, we conclude that 

SCJU-tf) = 5m„1(^) or S.m(x) = ̂  ^ y 

which concludes the proof of Theorem 3.2. 

Tk2.OH.2jn 3.3: If Sk(x) obeys 

^ + 1(x) - Sk(x) + 1 = 0, 

then Sk(x) ^ 0 for any finite x9 k 4 -1. 
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VKOO^i Let Sk(x) be the continuous solution as a function of x. Then, 

limit Sk(x) = Sk(x0), 

where Sk(x0) is finite. If Sk(x0) = 0, then 

limit \xS% + 1(x) - Sk(x) + l] = 1 + 0, 

k + 1 which contradicts the fact that xSk (x) - Sk(x) + 1 = 0. However, if k = -1, 
then £_!(#) = 1 + x, which is zero for x = -1. For all other k, Sk(x) = 0 
for all finite x. 

h. EXTENDED RESULTS FOR GENERALIZED PASCAL TRIANGLES 

The results of Section 3 can be extended. Let 

(̂tf) a polynomial in x. Then /(#5(a:)) = £(x) yields 

1 
1 + cxS(x)g(xS(x)) S(x) (4.2) 

1 - £(a?) + cxS(x)g(xS(x)) = 0 

which is a polynomial in £(#). Because of the 1 and -S(x) relationships in 
the equation, all of the previous results hold. For example, all of the gen-
eralized Fibonacci numbers from the generalized Pascal triangles arising from 
the coefficients generated in the expansions of the multinomials (1+x + x2 + 
• •• + xm)n will have convolution arrays governed by the results of this paper 
and similar to those reported for PascalTs triangle in [1] through [4], 

Now, looking at (4.2), since #(0) = 1, the polynomial in S is of the form 

•h + °x 1 Xs + • • • + sk(x) = o. 
XK Xk 

As before, inspecting the coefficients yields, for roots S*9 S£, ..., S£, 

spis*3 . . . s* = {-i)k/xk 

and 

spp* . . . s ^ _ + — + .. . + -^ J ?* I ̂  - ̂  - . . . ̂ ^ _ 1 _ («c - D(-D* 

so that 

-L + -L + ... + _L 
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Now, 

iHiot(sfm+s^) + ••• + ^ W ) = 1; 

Thus, limit 1/S^(0) = 1 and limit 1/S?(x) = 0, and we again have one and only 

one bounded and continuous solution near the origin. 
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