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H-285 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA. 

Consider two sequences \Hn> and \Gn\ _ such that 

(a) (Hn9 Hn+l) = 1, 
(b) (Gn, Gn+l) = 1, 
(c) Hn+2 = Hn+1 + Hn (n >. 1), and 
(d) Hn+l + Hn_, = sGn (nil), 

where s is independent of n. 
Show s = 1 or s = 5. 

H-286 Proposed by P. Bruckman, Concord, CA. 

Prove the following congruences: 

(1) Fsn E 5n (mod 5*+ 3); 

(2) F^ E L^n+l (mod 52n + 1 ) , n = 0, 1, 2, ... . 

H-287 Proposed by A. Mullin, Ft. Hood, Texas. 

Suppose #(•) is any strictly-positive, real-valued arithmetic function 
satisfying the functional equation: 

(g(n + l)/(n + 1)) + n = (n + l)g(n)lg(n + 1) 

for every integer n exceeding some prescribed positive integer m. Then g(n) 
is necessarily asymptotic to Tr(n), the number of prime numbers not exceeding 
n; i.e. , g(ji) ~ Tr(n) . 
H-288 Proposed by G. Wulczyn, Bucknell University, Lewisburg, PA. 

Establish the identities: 

(a) FkLk + 6r+3 - Fk + 8r+H^k + 2r+l = ^ ' ^ L2r + lF2r + l^k + hr +2 • 

(b) FkLk + Sr - Fk + QrLk + 2r = (-1) ^2rF2r^k+kr • 

H-289 Proposed by L. Carlitz, Duke University, Durham, N.C. 

Put the multinomial coefficient 

(m1 + m2 + • • • + mk)! 
(m1, m2, . . . . , mk) m1\m2l . . . mk\ 

hll 
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Show t h a t 

(*) L2 &> s ' t>)(jn - 2r> n - 2s9 p - 2t) 
r+s+t=X 

^ ( - 2 ) > + J ' + * ( £ , j , k , u)(m-j-k,n-k-i,p-i-(j)(m + n + p>2\) . 
i+j+k+u=\ 

SOLUTIONS 

A PAIR OF SUM SEQUENCES 

H-269 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

The sequences \CLn\ and \bn> , de f ined by 

[>/3 ] [n/2] 

k = 0 k = 0 

E fn-kl 
\2k+l\> 

7, _ n u -J k = 0 

are obtained as diagonal sums from Pascal's triangle and from a similar tri-
angular array of numbers formed by the coefficients of powers of x in the ex-
pansion of (x2 + x + l) n , respectively. 

(More precisely, * is the coefficient of xk in (x2 + x + l)n.) 

Verify that an = bn_1 + bn for each n = 1, 2, ... . 

Solution by A. Shannon, School of Math Sciences, New South Wales Institute of 
Technology, Broadway, Australia. 

It follows from Equation (4.1) of Shannon [2] with P = P = 1, § = 0, that 
an = an+l + an+3* 

A Pascal triangle for * can be set up as follows, 
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and it can be observed, and readily proved by induction that, 

[i\- ["i1]* [ti]+ [VAI 
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By an extension of the methods of Carlitz [1] we can establish with somewhat 
tedious detail that 

bn = bn_2 + bn_3 + bn_h. 

Then, again with inductive methods, we get 
an = an-l + ^n-3 = 2?n_1 + b„_2 + 2?„_3 + Z?n_If = &„_! + &n , 

as required. 
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Also solved by P. Bruckman and the proposer. 

IT'S A SINH 
(Corrected) 

H-270 Proposed by L. Carlitz, Duke University, Durham, N.C. 

Sum the series 

-=T. xayhz° 
(b + Q - a)\{o + a - b)l(a + b - a) I 

a, b, o 

where the summation is over all nonnegative a, b9 o such that 
a <_ b + e9 b <_ a + c9 c <_ a + b. 

Solution by P. Bruckman, Concord, CA. 

Let v = b + c - a, s = a + c - b9 and t - a + b - <3. Then, p + s = 2c, 
s + £ = 2a, r + t = 2b; this implies that P, S, and t are either all even or 
all odd. Hence, 

i(e+t) i(t+r) ^(r + e) 

r, s, t > 0 
r =s= t (mod 2) 

tl 

Thus, 5 = S^ + S29 where 

(2> 5 i 2 ^ (2p ) ! (2s) ! ( 2 t ) ! : 
y* #s + * y t + r z r + B 

, t >o 

E s + t + 1 t + r + 1 N r + s + l 

— ^ ( 2 P + 1 ) ! . (2s + 1 ) ! {It + 1)1 
r, 5, t >0 

But £ and S are readily evaluated, namely: 

V (Sy*)2r (Jxz)2s (/xy)2t * /— u /— u /— 
Si = 2-* (2i0' ( 2 S V (?t)f = c o s h ^y* ' c o s h /5:s # c o s h /a#» (2P)! (2s)! (2*)! 

*\ S, t > 0 
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and 

52 = Z , (2r + 1)1- (2s + 1)! (2t + 1)! = slnh ^ ' slnh ^ ' slnh ^ 
r,8tt > 0 

Therefore, 

(4) 5 = cosh /xy # cosh /z/i~ • cosh /zx + sinh /xy • sinh /z/S" • sinh /zx. 
Also solved by W. Brady and the proposer. 

H-271 (corrected) 

Proposed by R. Whitney, Lock Haven State College, Lock Haven, PA. 

Define the binary dual, D9 as follows: 

D = h \ t = TJ(a€ + 2i); a* e {o, l}; n > ol. 

Let D denote the complement of D with respect_ to the set of positive in-
tegers. Form a sequence, <£n>M=1, by arranging D in increasing order. Find 
a formula for Sn. 

(Note: The elements of D result from interchanging + and x in a binary 
number.) 

***** 


