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INTRODUCTION 

There are numerous applications of linear operators and matrices that give 
rise to tridiagonal matrices. Such applications occur naturally in mathemat-
ics, physics, and chemistry, e.g., eigenvalue problems, quantum optics, mag-
netohydrodynamics and quantum mechanics. It is convenient to have theoretical 
as well as computational access to the characteristic polynomials of tridiag-
onal matrices and, if at all possible, to their roots or eigenvalues. This 
paper produces explicitly the characteristic polynomials of general (finite) 
tridiagonal matrices: these polynomials are given in terms of the Fibonacci 
pseudogroup Fn (of order fn, the nth Fibonacci number), a subset of the full 
symmetric group 6n. We then turn to some interesting special cases of tri-
diagonal matrices, those which have periodic properties: this leads directly 
to periodic linear recurrence systems which generalize the two-term Fibonacci 
type recurrence to collections of two-term recurrences defining a sequence. 
After some useful lemmas concerning generating functions for these systems, 
we return to explicitly calculate eigenvalues of periodic tridiagonal matri-
ces. As an example of the power of the techniques, we have a theorem which 
gives the eigenvalues of a six-variable periodic tridiagonal matrix of odd 
degree explicitly as algebraic functions of these six variables, generalizing 
a result of Jacobi. We end with a brief discussion of how to explicitly cal-
culate the characteristic polynomials of certain finite dimensional repre-
sentations of a Hamiltonian operator of quantum mechanics. 

SECTION A. THE FIBONACCI PSEUDOGROUP 

We give a few essential definitions and observations about finite sets 
and permutations acting upon them which will be necessary in the sequel. We 
may think of this section as a theory of exterior powers of sets. 

Let A be a finite set and let |yt| denote the number of distinct elements 
in A. Let 2A denote the class of all subsets of A and define AkA to be the 
subclass of 2A consisting of all subsets of A with exactly k distinct elements 
of A. Thus for B e 2A, B e AkA iff \B\ = k. Clearly, 

\/\kA\ = M^'l (binomial coefficient) and \2A\ = 2 U I . 

We have 

2A - U A A (disjoint class union) 
o <. k <. Ul 

which implies the usual relation 

2"= EGO-
0 < k < « 

Note that A0A = {0} (empty class) and that A,i4U = A. 

435 
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Let Sn denote the full symmetric group of all permutations on n elements. 
Assume Sn acts by permuting the set of ciphers N = {l, 2, . .., n}. We will 
write the permutation as disjoint cycles; empty products will be the identity 
permutation. Consider the following subset Fn C Sn , defined by 

Fn = {(h, ^1 + 1) ... (£fc, Ik + D|l < ̂ i + 1 < i2> ^2 + 1 < ̂ 3> 

..., ik_l + ± < ik < n}. 
Fn is a certain subset of disjoint two-cycle products in Sn. Observe that 
(1) e Fn9 (1) = identity of Sn. For 0 e Fn , a2 = (1), thus every element of 
Fn is of order two and is its own inverse. Thus, if 0 e Fn, then a"*1 e Fn . 
Suppose a, p e Fn. Then ap e Fn iff a and p are disjoint; all the two-cycle 
products of Fn are not disjoint. A pseudogroup is a subset of a group which 
contains the group identity, closed under taking inverses, but does not always 
have closure. In the present case Fn = Sn iff n = 0, 1, 2. If n< 2, Fn is not 
a group, but Fn is a pseudogroup. We call Fn the Fibonacci pseudogroup be-
cause of the following lemma. 

Lmma A7: Let fn denote the nth Fibonacci number. Then 

\Fn\ = fn> n >_ 0. 
?H,00i'. We may write 

Fn ~ U ^ktn (disjoint union) 
0 <k < [nil] 

where Fk n consists of k disjoint two-cycles of Fn. But observe that 

and the lemma follows. Note that (-l)k is the sign of the permutations in 

Fk^n . Then there are c^ \ k J w i t n n e g a t i v e sign and ^ \ k ) w i t n 

k odd k even 

even sign: this gives an alternative proof with \Fn\ = \Fn_±\ + |Fn_2|» by 

observing that \FQ\ = 1, |F1| = 1. 

Returning now to the finite set N = {l, 2, ...,n} and the action of Sn 
on N9 consider the convenient map 

Fix: Sn •> 2^ 

given for O e Sn by Fixer = { £ £ # : CT(̂ ) = i}, i.e., the set of elements of 
N fixed by a. Thus, Fix (1) = N. We also define CoFix O = {i e N: o(i) + i) 
and note that N - Fix a U CoFix a (disjoint union) for every 0 e Sn. If n > 
3, then Fix can be onto. 

Restricting Fix to Fn, the Fibonacci pseudogroup definition yields the 
handy facts that if 0 e FktH, then |FixO~| = n - 2k and | CoFix 0 | = Ik. 

It will be convenient to work with just half of the set CoFix 0; there-
fore, we define the subset of CoFix a, (small c) coFix 0 = {i e N: cr(i) = % + 
l}. Then J coFix 0 \ - k. Also, the number of elements of Fix a, 0 e Fk n 

i i / YI — k \ (Yi — k \ 
with I Fix a I = n - 2k is exactly ( _ or, ) = I r, )• Again combining defini-

tions, if 0 e Fk^n, then |A£Fixcr| = (n *kY 
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SECTION B. APPLICATIONS OF THE FIBONACCI PSEUDOGROUP TO DETERMINANTS 
AND CHARACTERISTIC POLYNOMIALS OF TRIDIAGONAL MATRICES 

We consider tridiagonal n x n matrices of the following form. 

(1) A„ = 

ax 

°i 
0 

0 

0 

0 

0 

* 1 
a2 

°2 
0 

0 

0 

0 

0 

b2 

as 

cs 

0 

0 

0 

0 

0 

b3 . 
ah . 

0 

0 

0 

0 

0 

0 

0 

a 
c n-2 

We define vectors 

a = (a15 ..., a n ) , b = (b± , ..., bn_1) 9 o = (c± . Jn-l' 

and regard An as a function of these three vectors, An= An(a9 b9 c) or as a 
function of 3n - 2 variables. Let det 4 denote the determinant of A. We re-
cord some simple facts about the determinant and characteristic polynomial of 

Lumma. B1: Let An be the tridiagonal matrix defined above. Then, 

a. d e t A n = an d e t A n _ x - bn.1on_1 d e t ^ n _ 2 . 

b . de t (An(a, b, c) - Xl) = ( - l ) n d e t (XI - Ay, ( a , b, o)) 

= de t ( A n ( a , - 6 , -Q) - XX) 

= ( - l ) n de t (XI - A ( a , -b, -o)) 

= ( - l ) n de t (X + A ( - a , fc, c ) ) . 

Our object is to give explicit information about det (An - XI). We sum-
marize this information using the notation of Section A in the result. 

TkzoSiQJM B1: The characteristic polynomial of a tridiagonal matrix can be 
written as the sum of a polynomial of codegree zero and a polynomial of co-
degree two as follows: 

(2) det (An(a, b, o) - XI) = T T (ak - X) + Pn(X; a, b9 e) 

where 

and 

(3) 

deg Pn (X; a, b9 c) = ? 

Pn(X; a, b, o) 

= (-D" E *" E H)" 
0 ^ y ^ n - 2 !<.&<. [n/2] 

1 <. k ± n 

2 

•v-kl £ n b*c, 3 3 
j e coFix a V4 e A' 

E TT 
In particular, 

(4) det An = ] T sgn (a) f j af 1~[ fycj. 
0 e jF ^ e Fix ° 3 e coFix a 
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This theorem gives complete closed form information about the polynomial 
Pn (X). Pn(X) explicitly describes the perturbation of the characteristic 
polynomial of A from the characteristic polynomial of the diagonal of A. 
Further, consider the family of hyperbolas xkyk = dk, l<_k<_n-lln E2n"2 

space, d.9 ..., dn_1 fixed constants. Then for fixed a e (Rn, points on these 
hyperbolas parameterize a family of tridiagonal matrices An(a, x, y) which 
all have exactly the same latent roots with the same multiplicities. The co-
efficients of the powers of X in Pn (A) are elegantly expressed polynomials in 
the components of a, b9 a and can be easily generated for computational pur-
poses: the set Fn can be generated from {l, 2, .,., n) in order 0 <_ k <.[n/2]9 
Fk n ; coFix is had immediately therefrom, and AmFix can be generated from a 
combination subroutine. 

To prove the theorem, we begin with 

detAn = ^ S g I 1 ( a ) a^(D •• • a?(n) ' 
a e Sn 

where aj = ai, bi9 oi9 0 for £ = J, £ + 1 = J, £ - 1 = j, otherwise, respec-
tively, 1 <L i9 j <L n. However, det An is really a sum over Fn C Sn9 has, in 
general, /„ terms, and bici occurs whenever b^ occurs (Lemma Bl) . From the 
partition of Fn into k two-cycles, 0 <. k <, [n/2] , we have 

(6) detAn = Yl (-D^Z) al(i) ••• ao(n) 
0 <, k ^ [n/2] a e Fk<n 

= Z (-DkTT at T\ b.c. 
0. <. fe <. [n/2] i e Fix a J e coFix a 

because there are three cases, j = o(j) , j > O(j) , and j < a(j) . If a^.) ̂  0 

then Ij - 0(j)\ <_ 1. In case of equality, ai,.. a. j) = bn-c- occurs in the 
°  \J ) Q tl J 

product. For cr e Fktn , O moves 2k elements and fixes n - 2k elements and is 
characterized by its fixed elements. The most O can fix for k > 0 is n - 2, 
so that (replacing each ak by ak - X) we have deg Pn(X, a, b9 o) = n - 2. 
Setting Pn (A) = Pn(X, a, 2?, e) , we have 

(7) P„(X) - E <-!>" **.„<*> 
1 <. fe J< [n/2] 

where deg Pfe n (A) = n - 2k and 

(8) pk „ (X) = X ) TT («i - *> TT bj c. 
' o e FT, „ i e Fix a j e coFix a 

Let M CN9 then 

(9) TT<««-*>- E (-1)|MM(E n ^ A M - 4 

is simply the symmetric polynomials identity rewritten in the notation of ex-
terior powers of sets. From this fact (9) and rearranging (8) for M = Fix G 
we have 

0 e Fk>n 0 < . £ £ n - 2 k j e coFix a AeA*Fixcr izA 
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For comparison, we note that combining equations (9) and (2) gives a direct 
evaluation of the traces of exterior powers of An (in this context, exterior 
powers of An are the compound matrices of An). This is so from the identity 

(ID det (An - XI) = J ] (-l)"-k(trA"-kil„)X* + (-1)*A\ 
0 <. k <. n - 1 

where An can be an arbitrary n x n matrix, tr is the trace of a matrix, AkAn 

is the kth exterior power of An (an ( -i J x (,) matrix). Thus, it is possi-

ble to also give trA An(a9 b9 o) as an explicit polynomial in the components 

of a, b, o for 1 <. k <_ n. 
We conclude this section with two examples. The first arose in a problem 

of positive definiteness of certain quadratic forms of interest in a plasma 
physics energy principle analysis. 

a. Let 1 <_ m <_ n and choose am = a/m, bmom = b. Then 

(12) nl detAn = ] T (-1)' 
0 <. k < [n/2] 

Bk,na 
n-lknk 

where t h e B 

(13) 

k, n 

}k, n 

are cer ta in integers 

a z F^.n we CoFix o 

(note the upper case C on CoFix here, |CoFix G| 
of these integers. 

2k), See Table 1 fo r a few 

Let 1 <_m <_ n and choose am = a , bmom - b. Then 

(14) detAn = J2 (-D*^ ~ccn-lkbk 
'k, n c 

where t h e C k, n 

0 <. k <. [n/2] 

are ce r ta in integers 

7 7 Z . (15) ,̂n = £ TT 
a e ^ ^ me Fix a 

Table 1 also contains a few of these integers. 

Table 1. The First Few CoFix; Fix Integers Bfef„; CktH Defined by 
Equations (13); (15), Respectively; 6 <. k <. [n/2] 

1 
2 
3 
4 
5 
6 
7 
8 

1; 
l; 
1; 
i; 
l; 
1; 
l; 
i; 

0 

l 
2 
6 
24 
120 
720 
5040 
40320 

2; 
8; 
20; 
40; 
70; 

112; 
168; 

J. 

1 
4 
18 
96 
600 
4320 
36480 

2 

24; 1 
184; 9 
784; 72 

2464; 600 
6384; 5400 

3 

720; 1 
8448; 16 

42272; 196 

4 

40320; 1 
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SECTION C. PERIODIC LINEAR RECURRENCE SYSTEMS 

It is now possible to use the results and notation of Sections A and B to 
draw conclusions about periodic linear recurrence systems. Of course, these 
generalize the usual linear recurrences; however, it is surprising that the 
Fibonacci pseudogroup is the key idea in their description. We first state a 
natural corollary to Theorem Bl without restriction of periodicity. 

Th(LOfl2M C1 : Given a pair of arbitrary sequences a , a , a , ... and b , 
b29 Z?3, ..., then the one-parameter class of linear recurrences 

(16) fn(t) = ajn_x + tK.^.2 
with fQ = 1, fi = di, has the general solution n > 1 

(17) /„<*> = £ *k £ TT «< TT V 
0 <. k <. [n/2] a e Fk>n i e Fix a j e coFix a 

For example, t a k i n g t = 1 , afe = a , Z?fc = b , k >_ 1, and r e c a l l i n g t h a t fo r 

a e Fk n , I F ix a I = n - 2k, | coF ix a | = k9 and |Ffe n | = ( , 1 y i e l d s 

0 <k < [n/2] 

the general solution of fn - an_1 + bfn_29f0 = 1, j\ = a. Taking a = b = 1 
yields the well-known sum over binomial coefficients expression for the Fibo-
nacci sequence. On the other hand, writing the generating function 

-2kbk 

d9) at) = £/„*" 
and recognizing that G{t) is a rational function of at most two poles, indeed 
G(t) = 1/(1 - at - bt2), yields the alternative solution 

( -\n + l / r— \n + lt 

(2Q. n -i. j i a + /a + 4Z?\ (a - /a + 4& 

/a2 + 4& 

Of course, from (18) we may regard fn = fn(a9 b) as a polynomial in a and b. 
In particular /„(a - X, b) as a polynomial in X can be written 

(21) f n i a - \ , b) = J] ("1)m( S (%feXn;2/C)an-m-2^Vm. 
0 £ m £ n \ 0 < . f e < . [ n / 2 ] / 

We see now that the zeros, X , 1 <_ k <_ n9 of polynomial (21) are precisely 

(22) Xk = a + 2/^F cos (i\k/(n + 1)), 1 <. fc <. n. 

This follows from equation (20), for fn = 0 implies that 

so that 
a + /a2 + 4i = (a - /a2 + 42>)^2^/n + 1 

/a2 + 4Z? = - A l a 2 tan 7Tfc/n + 1. 

Squaring gives a2 sec2 (nk/n + 1) = -42?. Replacing a by a - X gives equation 
(22). We have basically done the case of a period of length one. 
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We now take up the case of period two, 

Lmma CI: Let { fn) , n >, 0, be a sequence defined by 

fn = anfn-l + K-lfn-2> f0
 = 1' f\ = ai 

and the sequences { a n } , {bn} , have pe r i od two, i . e . , 

a 2 n = a 2 , a 2 n _ x = a19 b2n_± = b± , b2n = b2, n 2. 1. 

Then t h e g e n e r a t i n g f u n c t i o n i s r a t i o n a l w i th a t most four p o l e s : 

(23) G(t) - £ / „ * " 

1 + a,t - b0t2 

(24) = i 2 
2 . z, -u 4-^ 1 - (Z?x + b2 + a ^ H + Z?1Z?2̂  

, . _ ^ ( a > 3) . 4 ( - a , 3) . 4 ( g , a) , A(-$, a) 
^ ; " 1 - a*"1" 1 + at 1 - $t 1 + Bt 
where for D = b1 + b2 + ala2, 

(26) 2a 2 = D + /Z)2 - kbxb2, 23 2 = Z) - /z?2 - 4 2 ^ 

and 

(27) i4(a, 6) = (a 2 + axa - b2)/2(a2 - g 2 ) . 

PsiOO^: Write £(t) in terms of its even and odd parts (two functions). 
Then substitute the period two relations in to get the rationality of G(t) 
from the pair of relations 

(28) 

(29) 

/ a2-a1 b,+b9 A /a9-a1 b2-b, \ 
( l - % l t - l

2
 2t2JG(t) + ( 2 * + 2

2
 1t2\G{-t) -

/ a2 -a, b9 - b, A / a9 +a, b9 + b, 0\ 

^—V"^ + ~V~^ r( t ) + 1 1 + ~ V ~ ^ • - J - 2 - L *)<?(-*> 
where the determinant of this system is the denominator of the right-hand 
side of equation (24). 

Of course, comparing coefficients will give an expression for /„ as a 
linear combination of powers of poles of G(t) analogous to equation (20). On 
the other hand, there are polynomial expressions in the four variables a%, 
az ' ̂ i ' ̂ 2 ° ^ t*ie tyPe (18) which follow directly from Theorem B. 

We give only one example of the former. 
Let f2n = f2n_1 + f2n_2, f2n + 1 = f2n + 2fln_.L , / 0 = 1 , fl = 1, so t h a t / „ 

i s t h e sequence 1 , 1 , 2 , 4 , 6 , 14 , 20 , 4 8 , 68 , 166, 234, . . . . Then, we have 

(30) f2n = | ( ( 2 + /2")n + (2 - / 2 ) n ) , 

(3D 4 . + i - ^ ( C 2 + ^ > n + 1 - ( 2 - ^ ) n + 1 ) . 

Alternatively (30) and (31) can be shown by induction to satisfy the linear 
recurrence of period two. 

We now consider the general case of rationality of generating functions 
of arbitrary periodic systems of linear recurrences. 
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Idmma C2: Let fn = anfn.1 + bn_±fn.2 b e given with f0 
pose that an - a% and bn = bi if n E & (mod fc) and that 

i, A Sup-

^£5 1 < ̂ < ^ , Z?£, 0 ± I ±k 
are given as the first elements of the sequences {an} and {bn} which are not 
in two /c-periods. Call the system a period k system. Set 

(32) Git) =^fntn 

then G(t) is a rational function of t where 

(33) Git) = Pit)/Qit) 

and Pit), Qit) are polynomials In i, deg Pit) <_ 2k 

Vtooi: First write 

(34) Git) = ^ Gi{t) 

where 

(35) GAt) 

1, deg Qit) < 2k. 

1 <. !• <. fc 

H (mod /c) 

and where the sum is over integers n >_ 0, n congruent to £ modulo fc. From 
the relations 

(36) fn = a ^ / ^ + bl.1fn_2 if n = £ (mod fc), 

we have that 

(37) ££(t) = altGl_1{t) + ££_it2££_2(t). 

Using the modulo /c relations we can write the following equations 

(38) G^t) = a^G^t) +b0t2G_1(t) = axt + axtGk{t) + b0t Gk_1(t), 

(39) G2(t) = a2tGx(t) + i1t2G!0(t) = a^tG^t) + Z^t2 + blt2Gk(t), 

(40) £3(i) = a3tG2(t) + b2t2G1(t) 

(41) Gfc(£) = aktGk_^t) + ifc-i^-z^) 

This gives the system of equations in matrix form as: 

(42) 

-a2t 

-b2t2 

0 

0 

0 

0 

-a3t 

~-aht 

~bht2 

0 

0 

0 

1 

-a5t 

A -2*' 

0 

0 

0 

0 

1 

-ak-l* 

-\r -axt 

-bxt2 

-akt 

Gxit) 
G2it) 
G3it) 
Ghit) 
G5it) 

<?*-i(*> 
Gkit) 

= 

1 

0 

0 

0 
0 

0 

0 
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We rewrite equation (42) as 

(42) EG = J, 

with the obvious interpretation. Now H is invertible (in the indeterminant 
t) and we can solve for Gl(t)y . .., Gk(t) separately as rational functions, 
their sum is G(t). But, clearly, deg det H(t) = 2k, so that the denominator 
of G(t) must divide this, i.e., deg Q(t) <_ 2k. Also, the adjoint of H is given 
by polynomials of degree £ 2k - 1, thus, deg P(£) <_ 2k - 1. 

This rationality result is the starting point to produce further facts of 
which Lemma Bl and equation (20) are examples. The central difficulty lies 
in analyzing the denominator of the rational function to display sums of pow-
ers of its roots. We will apply the technique to tridiagonal matrices of 
periodic type in the next section. 

SECTION D. APPLICATIONS OF PERIODIC RECURRENCES TO TRIDIAGONAL MATRICES 

We return to tridiagonal matrices to apply the results of Section C first 
to recover a result of Jacobi and second to give a generalization of Jacobi?s 
theorem. 

ThdOKQjm VI (Jacobi) : The latent roots of the tridiagonal n x n matrix 

(43) 

a 
c 
0 
0 

b 
a 
c 
0 

0 
b 
a 
c 

0 
0 
b 
a 

0 
0 
0 
b . 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

a 
a 

a r e g iven for 1 <_ k <_ n by 

Xk = a - 2/bo cos i\k 
n + 1 " 

Vh.00^1 This follows directly from Lemma Bl and equation (22), by recog-
nizing that the matrix (43) defines a (period one) linear recurrence system. 

TkzosieJM V2: The latent roots of the (2n + l) x(2n + l) tridiagonal matrix 

(44) 

a 
d 
0 
0 
0 

0 
0 
0 

b 
c 
f 
0 
0 

0 
0 
0 

0 
e 
a 
d 
0 

0 
0 
0 

0 
0 
b 
o 
f 

0 
0 
0 

0 
0 
0 
e 
a 

0 
0 
0 

0 
0 
0 
0 
0 

a 
d 
0 

0 
0 
0 
0 
0 

b 
c 
f 

0 
0 
0 
0 
0 

0 
e 
a_ 

lie among the values (1 _< k £ n + 1 with the plus sign, 1 _< k <_ n with the 
minus sign): 
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(45) a + c /(a
 2 °\ + bd + ef + ifbdef cos 7T/C 

n + 1 

P/LOÔ J: Note that when a = c, fc = e, and d - f this reduces to the case of 
the period one theorem. By Lemma Bl, we recognize (44) as defining a period 
two linear recurrence system. Take therefore the odd case in Lemma CI, thus 
( - I ) 2 * - 1 

(46) 

= -1 and 

A(a, 3) iU-ot. 3) 

, 2-nik 

4(B, a) - A(-B, a) 

Then fn is zero iff (a/B)2n + 2 - o 
tion (22) yields 

(47) bd + ef + ac = iSbdef cos 

0 £ k <_ n + 1. 

i\k 

Reasoning as w i t h equa-

n + 1 
Replacing ac? by (a - X) (e - X) and solving for X gives (45). Thus we have all 
latent roots of a five-parameter family of matrices. 

Again, to apply similar techniques to families of matrices with more par-
ameters involves analyzing the denominator in Lemma C2. We point out that 
for large periodic matrices of special type (particular sparse matrices) the 
root analysis is relatively easy to do numerically, say, for periods small 
relative to the size of the matrix. 

SECTION E. THE APPLICATION TO A HAMILTON I AN OPERATOR OF QUANTUM MECHANICS 

The differential equation of the quantum mechanical asymmetric rotor may 
be written as (JD - E )W = 0 . (Schroedinger equation) where the matrix cor-
responding to the inertia tensor is 

(48) 
A 
0 

_0 

0 
B 
0 

0 
0 
c 

v a r i a b l e s a , 3 , 5 

"A 
B 
C 

2 
-2 

0 

0 1 
0 1 
1 1 

(49) 

so that 3 = C - (A + B) , and the differential equation becomes (single vari-
able representation) 

(50) 

where 

(51) 

^'^ds 1 " + ^^Iz + Ri-Z) = ° 
P ( s ) = a s 6 + 32" + a s 2 , 
« (* ) = 2 a ( j + 2 ) 3 5 + 3 s 3 = 2 ( j + l ) s , 
R(z) = ( j + l ) ( j + 2)zh - E z1 + a ( j + 1 ) ( j + 2 ) . 

After choosing a convenient 3-basis of eigenfunctions, getting the correspond-
ing difference equation with respect to that basis we have a tridiagonal ma-
trix appear. This tridiagonal matrix, however, is tridiagonal with the main 
diagonal and second upper and lower diagonals, but it is possible to reduce 
it to direct sums of the usual tridiagonals that we have already treated in 
Section B. We are not concerned here with giving the representation theory, 
and so we will sketch briefly the facts we need. 

The difference equation alluded to above becomes 
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where 

R A o, 

J,™ 

Rl 

U - rn) (j - m - 1 ) , 

(J + m)U + m - 1). 
We have here for convenience replaced — by 3, — by #; note that Pj,m = R3-,m9 

where m varies through -j <. m <. j 9 j may be a half integer. We choose the 
Yl — 1 
— « — and the matrix of interest is the n x 

i - 1) j = <£ + 2, 

2) i = j + 2, 

otherwise 

variable n = 2j + 1, so that j = 

n matrix A - (a^-)5 where 

, n - 2% + 1 

(53) (n 

0 

2 

i) (n 

Da 

This is a nonstandard tridiagonal matrix with off diagonal integer entries. 
Generalizing this situation slightly, we define 

(54) 

al 

0 

0 
0 

0 

0 
0 

0 

a2 

0 

bn-2 
0 

a 3 

o „o 

e o 

0 

&n-3 
o De 

0 . 
•. 

9 0 

bn-3 
0 

0 

• • 

••. 
s o 

a 

p 
b 

0 0 

0 

0 

a, 

We see immediately that the directed graph of this matrix has two components 
each of which is the directed graph of a standard tridiagonal matrix. This 
observation will give the first direct sum splitting: we shall see that each 
of these splits for sufficiently large n. 

Lumma El: The n x n matrix A is similar to a direct sum of four tridiag-
onal matrices if n is not trivially small. Alternatively, the characteristic 
polynomial of the n x n matrix A factors into four polynomials whose degrees 
differ by no more than one. 

PKOO&I It is sufficient to exhibit the similarity transformations that 
convert the generalized supertridiagonal matrix A into similar standard tri-
diagonal matrices. For the first stage define the permutation 09 

(55) a(fc) 
if k < 

if k > 

n + 1 
~ 2 

n + 1 
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where 1 <_ k <_ n and [x] denotes the greatest integer in x function. Associa-
ted with O is an n x n permutation matrix S0. Then, S0AS^ will be a stand-
ard tridiagonal matrix, i.e., zero entries everywhere except the main diag-
onal, first above and first below diagonals. Further, setting B = SaAS^ , B 
will be, in general, (n _> 3), a direct sum of two tridiagonals: 

[n + 11 k x k and (n - k) x (n - k) where m - — - — . 

But these tridiagonals are of a special kind, in fact, of the form 

(56) 

am-i bm+i 0 0 

bm_x am bm 0 

0 bm am
 hm-i 

0 0 bm+1 an Lm-1 

f o r t h e e v e n c a s e and 

(57) B" 
"m-i 

bm-l 

0 

b m 

am 

bm 

+ 2 0 

b m+1 

a m + 1 

for the odd case. Because of the special up and down features, we can split 
these matrices by means of the similarity matrices: 

(58) 
I 

_-J 

J ' 

I_ 
for n even; P" 

I 
0 

-J 

0 
1 
0 

J 
0 

I 
for n odd; 

where I is the identity matrix of appropriate size and J is zero everywhere 
except for ones on the main cross diagonal. Thus, PBP'1 (with appropriate 
primes on the P and B) is a direct sum of two matrices and of the form 

(59) 'bm-l 

bm+1 

am + b„ 

bm+i 

b m-l 

a-m-i 

for n even, and 

(60) 

CCm-l br 

2b n 

bm+i 

when n is odd. 
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We can now apply the lemmas of Section B to write down explicitly the 
characteristic polynomials of these quantum mechanical Hamiltonian operators; 
from such explicit forms one expects to elicit information about energy lev-
els and spectra, viz., the eigenvalues are roots of these polynomials. 
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VECTORS WHOSE ELEMENTS BELONG TO A 
GENERALIZED FIBONACCI SEQUENCE 

LEONARD E. FULLER 
Kansas State University, Manhattan, Kansas 66502 

1. INTRODUCTION 

In a recent paper, D. V. Jaiswal [1] considered some geometrical proper-
ties associated with Generalized Fibonacci Sequences. In this paper, we shall 
extend some of his concepts to n dimensions and generalize his Theorems 2 and 
3. We do this by considering column vectors with components that are elements 
of a G(eneralized) F(ibonacci) S(equence) whose indices differ by fixed in-
tegers. We prove two theorems: first, the "area" of the "parallelogram" de-
termined by any two such column vectors is a function of the differences of 
the indices of successive components; second, any column vectors of the same 
type form a matrix of rank 2. 

2. PRELIMINARY RESULTS 

We shall be considering submatrices of an N x N matrix T = [Ti + J-_±] where 
Ts is an element of a GFS with. T1=a and T2 =b. For the special case a = b = 
1, we denote the sequence as Fs . We shall indicate the kth column vector of 
the matrix T as Tok = [Ti + k _J . In particular, the first two column vectors of 
T are T01 = [T^] and TQ2 = [Ti + 1\. We shall now prove a basic property of the 
matrix T. 

Lumma 2.1: The matrix T = [Ti+j_j] is of rank 2. 

From the fundamental identity for GFS, 
IT = J? rp i p m 

r + s L v + 1^ s L r -1 s - 1 ' 

it follows that 

T0k = Fk-l^Q2 + Fk-2T01e 


