A PROPERTY OF WYTHOFF PAIRS

V. E. HOGGATT, JR.

San Jose State University, San Jose, CA 95192
and
A. P. HILLMAN

University of New Mexico, Albuquerque, NM 87108
The Wythoff pairs A_{n} and B_{n} are the ordered safe-pairs in the game. See for example [1].

$$
\begin{aligned}
& A=\left\{A_{n}\right\}=\{[n \alpha]\}=\{1,3,4,6,8,9,11,12,14,16,17, \ldots\} \\
& B=\left\{B_{n}\right\}=\left\{\left[n \alpha^{2}\right]\right\}=\{2,5,7,10,13,15,18,20,23, \ldots\}
\end{aligned}
$$

where $\alpha=(1+\sqrt{5}) / 2 . \quad \alpha^{2}=\alpha+1$. The following properties will be assumed:
(i) The sets A and B are disjoint sets whose union is the set of positive integers.
(ii) $B_{n}=A_{n}+n$.

Lemma 1: $A_{A_{n}}+1=B_{n}$.
Proof: Consider the set of integers $1,2,3, \ldots, B_{n}$. Of these, n are $B^{\prime} \mathrm{s}$, and the rest are $A_{1}, A_{2}, A_{3}, \ldots, A_{j}=B_{n}-1$. Thus, $j+n=B_{n}$, but A_{n} $+n=B_{n}$, so that $A_{A_{n}}+1=B_{n}$.

If we consider the set of integers $1,2,3, \ldots, A_{n}$, there are $n A$'s and $B_{1}, B_{2}, \ldots, B_{j} \leq A_{n}-1$; thus,

Lemma 2: There are $A_{n}-n B^{\prime}$ s less than A_{n}.
Theorem: $A_{A_{n}+1}-A_{A_{n}}=2, \quad A_{B_{n}+1}-A_{B_{n}}=1$;

$$
B_{A_{n}+1}-B_{A_{n}}=3, \quad B_{B_{n}+1}-B_{B_{n}}=2
$$

Proof: It is easy to see that no two B^{\prime} s are adjacent. Consider $A_{n}+1=$ A_{n+1} or $A_{n}+1=B_{j}$, then

$$
A_{n+1}-(n+1)-\left(A_{n}-n\right)=1 \text { iff } A_{n}+1=B_{j} .
$$

Fix j, then since $A_{n}+1$ is a strictly increasing sequence in n, there is at most one solution to $A_{n}+1=B_{j}$, and from $A_{A_{n}}+1=B_{n}$, we see $n=A_{j}$, so

$$
A_{A_{j}+1}-A_{A_{j}}=2 \text { and } A_{B_{j}+1}-A_{B_{j}}=1
$$

From $A_{n}+n=B_{n}$, it easily follows that

$$
B_{A_{j}+1}-B_{A_{j}}=3 \text { and } B_{B_{j}+1}-B_{B_{j}}=2
$$

We now show that $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are self-generating sequences. We illustrate only with $B_{n}=\left[n \alpha^{2}\right]=\{2,5,7,10,13, \ldots\}: B_{1}=2$ and $B_{2}-B_{1}=3$, so $B_{2}=5 ; B_{3}-B_{2}=2$, so $B_{3}=7 ; B_{4}-B_{3}=3$, so $B_{4}=10 ; B_{5}-B_{4}=3$, so $B_{5}=13$. Now, knowing that

$$
B_{n+1}-B_{n} \text { is } 2 \text { if } n \varepsilon B \text { and } B_{n+1}-B_{n}=3 \text { if } n \notin B \text {, }
$$

we can generate as many terms of the $\left\{B_{n}\right\}$ sequence as one would want only by knowing the earlier terms and which difference to add to these to obtain the next term.

REFERENCE

1. L. Carlitz, Richard Scoville, \& V. E. Hoggatt, Jr., "Fibonacci Representations," The Fibonacci Quarterly, Vo1. 10, No. 1 (January 1972), pp. 1-28.
