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1. INTRODUCTION 

Let the F 's be defined as follows: 

F0 = 0, F1 = 1, Fn + 2 = Fn+1 + Fn , U > 0 . 

Let k > 0 be any integer. There is then a smallest positive 777 such 
that k\Fm [if a, b denote integers, we sometimes write a\b instead of b = 0 
(mod a), a\\b instead of b .= 0 (mod a), and b $ 0 (mod a2)]. This unique w 
will be denoted by 3^; ̂ 3 is usually called the entry point of k. Moreover, 
the sequence Fn (mod k) is well known to be periodical. We denote by lk the 
period and we let yk = lk/$k. 

Our purpose in this paper is to compute (at least in a theorical way) 
y for each prime p. In [1], Vinson also computes yp, but our point of view 
and our methods are really different from those of Vinson, so that we obtain 
new results regarding yp and additional information about 3p • 

This paper is based on a few results which are summarized in Section 2 
and proved in Section 6. Some of these are well known and their proofs (ele-
mentary) are given for the benefit of the reader. 

2. PROPOSITIONS 

We now state those propositions that will be useful later. 
Let p be a prime with p > 5. For simplicity, we let 3 = 3p, 1 = lp, 

and y = yp. Then 

(1) p\Fm <^>3|w, V m. 

This shows that Y is an integer. 

(2) Y £ {lj 2, 4}; to be more precise, 

y = 1 <=^F3_1 E l (mod p) 

y = 2 <=»F3-1 = -1 (mod p) 

Y = 4 <=>F32_1 E -1 (mod p) 

(3) Y = 4 ̂ ^ 3 ̂ s 0&? 

4|3 ^ Y = 2 

(4) The following holds for any j e {o, 1, ..., 3 - l} and anz/ & > 0: 

In particular, letting j = 1, we obtain 

(5) For all a, 2? > 0, we have 

b 
JP _ V rkwkwh~kw (rk - bl \ 
hab ~ 2^ Lbbaha-lhk \Cb ~ kl (b - k) I ) ' k=l 
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[Note that if p is a prime, then p\Cp for k = 1, . . . , p - 1. Then the above 
formula with a = q and b = p together with Fermatfs theorem implies that 

Fpq = FpFq (mod p) 

for all prime p and all integers q.] 

(6) If p = 10m ± 1 , t/zen Fp E l (mod p) and 3 | ( p - 1 ) . 
If p = ±0m ± 3, then Fp E - 1 (mod p) and 3 | ( p + 1 ) . 

(7) 2 3 | ( p ± 1) <=>p = 1 (mod 4) 

[according that p is (p - 1) or is not (p + 1) a quadratic residue mod 5]. 

We are now in a position to state our main results. We will investi-
gate separately the cases p = 10m ± 1 and p = 10m ± 3. The conclusions are 
of very different natures. 

3. COMPUTATION OF y WHEN p = 10m ± 3 

T/ieô iem 7: Let p be of the form 10m ± 3. Then either p = 4 m ' - l , y = 2 , 
and 4|3, or p = 4m' + l, y = 4 , and 3 is odd. 

This theorem allows us to calculate y by a simple examination of the 
number p. Such a result does not hold in the case where p = 10m ± 1. 

VKOO^I By (6) above, we can write p = y3 - 1 and Fp = -1 (mod p). Thus, by 
(4), we have 

(3.1) F ^ = -1 (mod p). 

Since y = 1 implies F^_± E l (mod p) and since F^_± E 1 (mod p), we conclude 
from (3.1) that y > 1 and l\\]i. 

Suppose 3 is even. Then y = 2 and Fg _ ± = -1 (mod p). From (3.1), this 
implies that y is odd. Suppose 2||3. Then p = y3 - 1 = 1 (mod 4), so that by 
(7), 23|(p + 1), which is a contradiction. Thus, 4|3 and p E -1 (mod 4). 

Suppose 3 is odd. Then y = 4 and F^_± E -1 (mod p). From (3.1), this 
implies that 2||y. Hence, p = y3'- 1 = 1 (mod 4). The theorem is proved. 

From the preceding proof, we obtain another statement. 

Tk&QSiem 2: I f y = 1 , then p = 10m ± 1. 

k. COMPUTATION OF y WHEN p = 10m ± 1 

This case is more complicated and it is convenient to introduce the 
characteristic exponent aofp, well defined [recall (6)] by 

= 2av3 + 1, V odd. 

The explicit computation of a will be made later, by means of the following 
lemma. 

Lmmci: If p = 10m ± 1 = 2%3 + 1 with V odd, then 

FP-I 
(8) y = 1 =»-£— E 2a (mod p) 

jp 

(9) Y = 2 ̂ ^ ^ = -2Q (mod p) 
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V i (10) Y = 4 ^>-f^ E -2V V
 1 (mod p). 

^v3 P 

In fact, apply (5), with a = v3 and b = 2° . Then 

2a 

F , = Y^ Ck Fk F2a~kTP 
k = l 

This implies that 

(4-1) - ^ - = 2 ^a-i (mo d P>-

On the other hand, (6) and (4) imply 

(4.2) Ff_\ E 1 (mod p). 

Then, from (4.1) and (4.2): 

rp 

(4.3) fv .-|^- E 2a (mod p). 
-c v3 

Suppose y = 1, then F^_ 1 E 1 (mod p) and (8) follows from (4.3). 

Suppose Y = 2, then Fg_, E -1 (mod p), and since V is odd, (9) follows 
from (4.3). 

Suppose Y = 4, then F$_ 1 E -1 (mod p). Since V is odd, we have F^_x E 
-1 (mod p), so that (10) follows from (4.3). 

ThdOSizm 4' Let p = 10m ± 1. Then, p can be written uniquely as p = 2rs + 1 
with s odd, and we have 

Fp-i y = 4 «=> — — £ o (mod p) 

Y = l <=^-^i E 221-1 (mod p) 
F2s 

T = 2 ^ E 0 and ^ ^ f ' 1 (mod p) . 

(The statement concerning y = 2 will be made more precise later.) 

P/ioofi'- Suppose y = 4. Then, 3 is odd and, thus, a = r, v3 = s, so that, by 
the lemma, we have 

5 p - -2'F;^ t 0 (mod p). 

Suppose y = 1. Then, 3 is even, but 2[|B, since 4|3 implies y = 2. So 
a = r - 1 and v3 = 2s; thus, by the lemma, we have 

Ef± = 2r-i ( m o d p ) . 
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F 
Conversely, suppose — — ^ 0 (mod p) . Then p\Fs , since p|F . Thus, 

7 

F, \s, and so 3 is odd, proving that y = 4. Suppose that -^ E 22'~1 (mod p) 
2s 

We want to prove that y = 1 in this case. We now have 312s. If 3 is odd, 
F

P-i 
then y = 4 and, as seen above, —^— E -2vFyi^1 (mod p). But, since g|a, 

so that 

2 ="pr = ^ ( F . . 1 + F . + 1 ) = - ^ r - = - 2 ^ d ? > -
This is clearly a contradiction, since p is odd. If 2||3 and y = 2, we have 

F 
a = v - 1 and v3 = 2s. So, by the lemma, - = — E -2r~ (mod p). But, we as-

F _i 2s 

sume that -= E 2 (mod p). Hence, a contradiction. Thus y = 1, and the 
^2 

lemma follows. 

CoSLollaAy: If p = 10m ± 1 = 4m' - 1, then y = 1. 

In fact, one has % ' - 1 = 2 s + 1, s odd, if and only if r = 1. In 
this case, Fp.1 = F2g and, by Theorem 4, y = 1. 

We are now in a position to compute the characteristic exponent a of 
p. It is clear that if y = 4, then a = r; if y = 1, then a = r - 1. We have 
only to look at the case y = 2. 

lkdOK.(Lm Si Let 1 < k <_ r. Then a = r - k and y = 2 if and only if 

Fv -i ^ p - l ^ p - l * _ & 
(4 .4 ) * _ = . . . = — £ E 0 and -f— E -2r k (mod p ) . 

hs F2n-i6
 F2ks 

We see that a is determined by the rank of the first nonvanishing * P - I 

(mod p). 2Js 

VKOO^i Suppose that y = 2 and a = v - 1. By the lemma, we can conclude that 
F 
_p" E - 2 r ' k (mod p). On the other hand, since 2J's £ 0 (mod p) for j = 0, 

. .., /c - 1, we see that (4.4) holds. 
Conversely, suppose (4.4) holds. Then, by Theorem 4, since k > 1, 

y < 4, and y + 1, that is y = 2. Moreover, 6|2*s, but 3|2k'1s. Thus v3 = 2ks 
and a = r - k. Hence the result. 

5. FURTHER PROPERTIES OF y AND SOME INTERESTING RESULTS 

?H.opo&AjLLon 1: For any prime p , y = 2 i m p l i e s 4-1 3-
In f a c t , when p = 10m ± 3, t h i s fo l lows from Theorem 1. When p = 10m ± 1 , 

we prove t h a t 2 | | 3 i m p l i e s y = 1 . As 2 | | $ , y < 4 , and p\F2s, bu t p)(Fs and so 

V i + F a + i E " 0 (mod p ) . 
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But F28_1 = F;^1 + F; and, as s i s odd, FS_1F8+1 = F* - 1. Thus, s i n c e 2s = 
v 3 , we can w r i t e 

Vl E F 3 - l E ^ 2 e - l E - * 8 - 1 * 8 + 1 + Fs E 1 (mod p ) . 

Hence y = 1 , and t h e r e s u l t i s p roved . 
TP JP 

PsiopoA^Uon 2: If p = 10/77 ± 1, then y = 2 if and only if - ^ = ~^- = 0 
(mod p) . * 2s 

This is obvious from what precedes. Practically, however, this can be 
of some interest: to compute y, compute F8 (mod p). If Fs £ 0 (mod p),then 
Fp-i _ 
—— = 0 (mod p) and, thus, y ^ 4. Compute then Fs_i + Fs+1 (mod p) . If it 

does not vanish, then F2s t 0 (mod p) so that y ^ 1 and, thus, y = 2. 

PsiOpO&sUbLon 3: Let p be any given prime number. Then the greatest t such 

that p*|-fg is the greatest £ such that pt\Fp±i. 

In fact, either p = 10m ± 1, p = A3 + 1, or p = 10̂ ? ± 3, p = y$ - 1. By 
(5), this implies 

P P x 

T 1 = XFpX;J £ 0 (mod p) or - ^ - E u i ^ J j 1 £ 0 (mod p) , 

respectively. Hence, Proposition 3. 

6. PROOFS OF PROPOSITIONS 

This section is devoted to the proofs of the propositions stated in 
Section 2, except for (7), for which the reader is referred to The Fibonacci 
Quarterly 8, No. 1 (1970):23-30. 

Vh.00^ 0^ [4] : Since the sequence Fn (mod p) starts with 

FY E l , F2 = l, F3 E 2, ..., Fp.^O, 

it follows from Fn + 2 = Fn + 1 + Fn that the following 3 members of this sequence 
are obtained by multiplying the first 3 one by F&mml so that, for any j = 0, 
..., 3 - 1, F2$ _-• E Fg.iFg. . (mod p). The argument can be applied again to 
prove that ̂ 33 ̂  = ̂ 3-1^3-j and, more generally, that -Fkg_i E £3-î cfc-i) 3 - 1 
(mod p). Proposition (4) then holds in an obvious way. 

VK.00J oj (5) : Recall that 

where <P and - — satisfy y2 - y + 1. From this, it is clear that 

<P*=<PFn +Fn_x and (-1)"= (-^„ + Fn-i-

Then 

E fe k b -k C F Fa_1Fk9 u s ing b inomia l expansion and FQ = 0. 
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Vhool °i [1) ^nd (2): Recall that for any integer m we have 

Fm-iFm + i = Fl + <-Dm. 
Let 77? = @ in this formula. Thus, 

(6.1) Fg2.! E (-1)3 (mod p), 

taking account of F$+1 E ,Fg _ i (mod p). On the other hand, 1 is the smaller m 
such that Fg_i = ̂ m0-i = 1 (mod p) . Recall also that 1 = y3, by the very def-
inition of y. Then, 

(a) suppose 3 odd. Thus, by (6.1), 

F2_1 E -1 so that F3_! f 1 and F ^ = 1. 

Thus y = 4. 

(b) suppose 3 even. Then (6.1) implies that 

F2 = 1 

Since p is a prime, either 

Fg_1 E 1 and y = 1, or F3.2 = -1 and y = 2. 

Hence (2) is proved. 

VKOOI ol (3) : To prove (3), we have only to show that 4|S implies y = 2. For 
this, we show that 

FhX E 0 (mod p) ) 
(6.2) V =^F2X E °  (mod P)-

F,.x + 1 E 1 (mod p) ) 

Suppose that the left member of this implication holds. Then from well-known 
formulas: 

Fh\+1 = 'F2\ + F2X+1 = F2X + F2.\F2\ + 2 " ( - 1 ) 

= F2X^2X + F2X+2> + 1 = 1 (mod p ) . 

Hence 
^2X^2X + F 2 X + 2) E 0 ( m ° d P>-

To p r o v e ( 6 . 2 ) , i t s u f f i c e s t o show t h a t GCD(F2X + F2A + 2>P) = 1- T o d o t h i s , 
s i n c e p\Fh^ i t s u f f i c e s t o prove t h a t GCD(F4X ,F2\ + F 2 \ + 2) = !• B u t 

6 = GCD(F^,F2X + Fzx + 2) = GCD(F 2 X (F 2 A + 1 + FA_J,Fzk + F2X + 2) 
and, as GCD(Fzx,F2X+2) = 1 , 

6 = GCD(F2, + 1 +F2X_1,Fn + 2 +FZX). 

I t i s then eas i ly seen that 

5|(^2X + l + ^2X-l)> «|(^2A-1 + ^2X-3>5 ..., $\F2 = 1. 
Hence (3). 

Vkooj 0& (6) -' Recall first that ( *r J = 1 or -1, according that p is or is 

not a quadratic residue mod 5, that is, p = 10m ± 1 or p = 10m ± 3, respec-
tively. Thus, we have to show that 

(%-\ = ±1 =>Fp E ±1 (mod p) and 31 (p + 1). 
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Recall also that \£j = (-) = 5 2 (mod p) . Now we prove that Fp = ±1 (mod 

p). We have 

P /5 J z 3 k odd 

since p|C2 +1 for each k E <Q, 1, . .., *-——>. As 2P = 1 (mod p) , we have 
P-i ^ z ' 

Fp E 5 2 (mod p) , 

so that (-=-) E Fp (mod p). When ( —j = 1, we can give another proof. There 

exists a p such that p2 E 5 (mod p) . Then, for such a p, 6 = —(p + 1) and 

6' = y(p - 1) are roots of x2 - x - 1 = 0 (mod p) and thus, 

, 3,n E 0'*-i + 0'"-2 (mod p). 

I t i s then e a s i l y seen t h a t 

(6 .3 ) Fn E i [ G n - 0 '»] (mod p ) . 

But, as p i s a p r ime , 0 P ~ E 0 f P _ 1 E l (mod p) by Fermatf s theorem. Now from 
(6 .3 ) i t i s obvious t h a t 

Fp.± E 0 (mod p) 

Fp E 1 (mod p) . 

Now, to prove that 31 (p + 1) according that (—) = -1, it will suffice 

to develop Fp + 1 in a way similar to the method used above for Fp . 
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