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ABSTRACT

The normal frequencies are computed for a system of N identical oscil-
lators, each hanging from the one above it, and the highest oscillator hang-
ing from a fixed point. These frequencies are obtainable from the roots of
the Chebyshev polynomials of the second kind.

A massless spring of harmonic constant kK is suspended from a fixed
point, and from it is suspended a mass m. This system will oscillate with an
angular frequency w, = (k/m)Y%*. 1If N such oscillators are thus suspended,
each one from the one above it, we will call this system a hanging oscillator
of order M.

The Lagrangian for this system is
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where g; is the displacement of the Zth mass from its equilibrium position.
This Lagrangian can also be written in the language of matrix algebra as
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where g and g are, respectively, the column vectors col(qqys Qo5 vnns qN) and
col(gys Gys +++»qy). It is obvious that T = I, where I is the N x N identity
matrix. For U, we state the following theorem.

Theorem 1: wu;; = 2 and ui,i+1 = Ui+1,; = -1 for 2 = 1, 2,
1, and all other values of u;; are zero.

This can be demonstrated by mathematical induction. It is obvious for
N =1. TFor N = n the last two terms in (1) are
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(3) =5 mwo(qy_y = Qo) — Mo (g, = G, )"
From these terms come the matrix elements Up-1,n-1= 2, Un-1,n = Un,n-1 = -1,
Uun = 1. For N =n + 1, these terms are added to (1):

1 ., 1 2
(4) fmqn-!-l - 57770)0 (Qn-rl - qn)
The matrix element u,, is now increased to 2, and the additional elements
Up,m+1 = Un+i,n = =1, Upyt1,n+41 = 1 now appear in the new n+1) x n+ 1)
matrix U.

The characteristic function for this problem is det (-mw?*T + mwsU). If
we let x = w/wo, then the normal frequencies for a hanging oscillator of or-
der N are given by the N positive roots of the polynomial det(~z?*I + U) = 0.
Each of the diagonal elements of this determinant is (-2 + 2) except for the
last, which is (-x? + 1). The only other nonzero elements are those immedi-
ately next to the diagonal elements; they are each -1.
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In the solution of this problem, the Fibonacci polynomials [1] will be
useful. These polynomials are defined by the recurrence relation

Fpep(x) = xF, ., (x) + F,(x), where F,(x) = 1 and F,(x) = x.
By repeated application of this recurrence relation, we can prove:
Theorem 2: F,,,(x) = (x® + 2)F,,,(x) - F,(x).

Theorem 2 can be used to prove:

Theorem 3: The characteristic function for the hanging oscillator of order
N is
(5) (mw2) "oy oq ().

The factor (mw%)” comes out of the determinant, leaving det(-x?I + U).
Theorem 3 thus reduces to the evaluation of the determinant

—x? 4+ 2 -1 0 0 0
-1 —x? + 2 -1 0 0
0 -1
© 7] PR
0 0 -1 -2 + 2 -1
0 0 0 -1 —x? + 1

to show that it equals Foy,.,; (i%).

If N = 1, Theorem 3 obviously holds, and F,(x) =-z? 4+ 1. Let us assume
that the determinant (6) is F,,,, (¢x) for N = n. Then for N = n + 1 we will
expand the determinant by minors. It is v;; times the minor of v;; minus v;,
times the minor of v;,. But the minor of v,; = -2® + 2 is the characteristic
function F,, ., (fx) for N = n. The minor of vi1» is (-1) times the character-
istic function E}n_l(ix) for V= n - 1. The determinant (6) is therefore

(—.Z‘Z + 2)F2n+l (ix) - FZn—l(ix)’

which by Theorem 2 is equal to

Fyne1y +1 (Z2) .

Theorem 3 is thus proved by mathematical induction.

Theorem 4: The characteristic frequencies of a hanging oscillator of order
N are

- g
(7) Wex; = wj = 2w, cos r 1 J < 1, 2, .

The Fibonacci polynomials and the Chebyshev polynomials of the second kind

Uy(x) are related by [2]:

(8) Froy (@) = i'NUN(%ix>.

The Fibonacci polynomials of imaginary argument then become:

(9) Fy,,Gx) = 1700, (—%x)
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and the Fibonacci polynomials of interest in this problem become:
, 1
(10) Fopep (G) = (—1)”U2N<5x>.

The roots of the eigenvalue equation obtained by setting the characteristic
function (5) equal to zero are those given by (7) [3]. Theorem 4 is thus
proved.

Two interesting special cases present themselves when 2V + 1 is an in-
tegral multiple of 3 or of 5.

If 2V + 1 = 3P, where P is an integer, then the root corresponding to
J =P is w = wy. Thus, one of the normal frequencies is equal to the fre-
quency of a single oscillator in the combination.

If 2V + 1 = 5¢, where @ is an integer, then the roots corresponding to
J =@ and to § = 2¢ are, respectively, w = ¢w, and w = ¢—1w0, where

¢ = 1.6180339885...

is the larger root of 2 - 2 — 1 = 0, the famous "golden ratio." This ratio
occurs frequently in number theory and in the biological sciences [4], but
its appearances in physics are very few, and usually seem contrived [5].

The coordinates g as functions of time are given by [6]

N
(11) q; (&) = ) azk cos (it - &)
k=1

where aj is the kth component of the eigenvector a; which correspond to the
normal frequency w; given by (7). These eigenvectors are obtained from the
equation

(12) m(-wiT + wil)a; = mw(-x5I + Va; = 0,

and their components therefore obey the following equations:

24m
-2a;; cos S+ 1 %2 = 0;
(13) .
2Jm
_a,j,k—Z - Zaj,k_l cos m— ajk = 0, k = 3, 4, eeey N.

The components of a; are therefore

- 2gm_,
Qjo = —2a;1 cos DAL
(14) 9z
J -
A = —2aj,k_1 cos W1 A k-2 for k = 3, 4, ..., N.

The components ajx can be evaluated from this recursion relation for the
Chebyshev polynomials of the second kind [3, p. 782]:

(15) Up () = 22Uy (@) = Up_o(x)
and we obtain

_ k-1 24m
(16) aJ-k = (—l) ajlf/k<COS m),

where a;1 is arbitrary.
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If the initial position and velocity of the jth mass are, respectively,
X; and V;, then the normal coordinates are [6, p. 431]

N .
Twgt 7
(17) C,(t) = Re E ma g et <X5 - E;IG)
j=1
il
_ k-1 2k . km
= ReJZ::lm(—l) a;1Us (cos I l)exp [Z’Lwot cos ST 1]
LV
i
“\" T 2w __km__
0 COS oW+ 1
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The purpose of this note is to prove some of the well-known congruences
for the Fibonacci numbers Up and Up-1, where p is prime and p = *1 (mod 5).
We also prove a congruence which is analogous to
a* - gH 2 _
U, = —af:—zfg where 0, and B are the roots of “ - x - 1 = 0.

We start by considering the congruence
(1) 22 -2 -1 =0 (mod p), which can also be written
(2) y? =5 (mod p),
on putting 2x - 1 = y.

It is well known that 5 is a quadratic residue of primes of the form
5m + 1 and a quadratic nonresidue of primes of the form 5m £ 3. Therefore,
(2) has a solution p if p is a prime and p = *1 (mod 5).

It also has -y as a solution, and these solutions are different in the
sense that

y # -y (mod p).

This obviously gives two different solutions x;, and x, of (1).



