CONCAVITY PROPERTY AND A RECURRENCE RELATION
 FOR ASSOCIATED LAH NUMBERS

J. C. AHUJA and E.A. ENNEKING
Portland State University, Portland, OR 97207

ABSTRACT
A recurrence relation is obtained for the associated Lah numbers,

$$
L_{k}(m, n),
$$

via their generating function. Using this result, it is shown that $L_{k}(m, n)$ is a strong logarithmic concave function of n for fixed k and m.

1. INTRODUCTION

The Lah numbers $L(m, n)$ (see Riordan [4, p. 44]) with arguments m and n are given by the relation

$$
\begin{equation*}
L(m, n)=(-1)^{n}(m!/ n!)\binom{m-1}{n-1} \tag{1}
\end{equation*}
$$

where $L(m, n)=0$ for $n>m$. Since the sign of $L(m, n)$ is the same as that of $(-1)^{n}$, we may write (1) in absolute value as

$$
\begin{equation*}
|L(m, n)|=(m!/ n!)\binom{m-1}{n-1} . \tag{2}
\end{equation*}
$$

We define the associated Lah numbers $L_{k}(m, n)$ for integral $k>0$ as

$$
\begin{equation*}
L_{k}(m, n)=(m!/ n!) \sum_{r=1}^{n}(-1)^{n-r}\binom{n}{r}\binom{m+r k-1}{m} \tag{3}
\end{equation*}
$$

where $L_{k}(m, n)=0$ for $n>m$. Using the binomial coefficient identity (12.13) in Feller [2, p. 64], it can be easily seen that

$$
\begin{equation*}
L_{1}(m, n)=|L(m, n)| \tag{4}
\end{equation*}
$$

The use of the associated Lah numbers $L_{k}(m, n)$ has recently arisen in a paper by the author [1], where the n-fold convolution of independent random variables having the decapitated negative binomial distribution is derived in terms of the numbers $L_{k}(m, n)$. In this paper, we first provide a recurrence relation for the numbers $L_{k}(m, n)$. This result is then utilized to show that $L_{k}(m, n)$ is a strong logarithmic concave (SLC) function of n for fixed k and m, that is, $L_{k}(m, n)$ satisfies the inequality

$$
\begin{equation*}
\left[L_{k}(m, n)\right]^{2}>L_{k}(m, n+1) L_{k}(m, n-1) \tag{5}
\end{equation*}
$$

for $k=1,2, \ldots, m=3,4, \ldots$, and $n=2,3, \ldots, m-1$.

2. RECURRENCE RELATION FOR $L_{k}(m, n)$

The author [1] has provided a generating function for the numbers $L_{k}(m, n)$ in the form

$$
\begin{equation*}
\left[(1-\theta)^{-k}-1\right]^{n}=\sum_{m=n}^{\infty} n!L_{k}(m, n) \theta^{m} / m! \tag{6}
\end{equation*}
$$

Differentiating both sides of (6) with respect to θ, then multiplying both sides by (1 - θ), gives

$$
\begin{equation*}
n k\left[(1-\theta)^{-k}-1\right]^{n-1}(1-\theta)^{-k}=(1-\theta) \sum n!L_{k}(m, n) \theta^{m-1} /(m-1)! \tag{7}
\end{equation*}
$$

which, using (6), becomes

$$
\begin{align*}
& n k \sum n!L_{k}(m, n) \theta^{m} / m!+n k \sum(n-1)!L_{k}(m, n-1) \theta^{m} / m! \tag{8}\\
& =(1-\theta) \sum n!L_{k}(m, n) \theta^{m-1} /(m-1)!.
\end{align*}
$$

Now, equating the coefficient of θ^{m} in (8), we obtain the recurrence formula for $L_{k}(m, n)$ as

$$
\begin{equation*}
L_{k}(m+1, n)=(n k+m) L_{k}(m, n)+k L_{k}(m, n-1) . \tag{9}
\end{equation*}
$$

The recurrence relation (9) is used to obtain Table I for the associated Lah numbers $L_{k}(m, n)$ for $n=1(1) 5$ and $m=1(1) 5$. It may be remarked that, for $k=1$, Table I reduces to the one for the absolute Lah numbers given in Riordan [4, p. 44].

3. CONCAVITY OF $L_{k}(m, n)$

The proof of the SLC property of the numbers $L_{k}(m, n)$ is based on the following result of Newton's inequality given in Hardy, Littlewood, and Polya [3, p. 52]: If the polynomial

$$
P(x)=\sum_{n=1}^{m} c_{n} x^{n}
$$

has only real roots, then

$$
\begin{equation*}
c_{n}^{2}>c_{n+1} c_{n-1} \tag{10}
\end{equation*}
$$

for $n=2,3, \ldots, m-1$. To establish the SLC property, we need the following:
Lemma: If

$$
P_{m}(x)=\sum_{n=1}^{m} L_{k}(m, n) x^{n}
$$

then the m roots of $P_{m}(x)$ are real, distinct, and nonpositive for all $m=1$, 2,
Proof: It can be easily seen that $P_{m}(x)$, using (9), may be expressed as

$$
\begin{align*}
P_{m}(x) & =\sum_{n=1}^{m} L_{k}(m, n) x^{n} \tag{11}\\
& =\sum_{n=1}^{m}\left[(n k+m-1) L_{k}(m-1, n)+k L_{k}(m-1, n-1)\right] x^{n} \\
& =(k x+m-1) P_{m-1}(x)+k x\left[d P_{m-1}(x) / d x\right]
\end{align*}
$$

By induction, we find that

$$
P_{1}(x)=k x, P_{2}(x)=k x(k x+k+1),
$$

and

$$
P_{3}(x)=k x\left[k^{2} x^{2}+3 k(k+1) x+(k+1)(k+2],\right.
$$

so that the statement is true for $m=1,2$, and 3 . For $m>3$, assume that $P_{m-1}(x)$ has $m-1$ real, distinct, and nonpositive roots. If we define

$$
\begin{equation*}
T_{m}(x)=e^{x} x^{m / k} P_{m}(x) \tag{12}
\end{equation*}
$$

then, since

$$
P_{m}(0)=0
$$

$T_{m}(x)$ has exactly the same finite roots as $P_{m}(x)$, and the identity (II) for $P_{m}(x)$ gives

$$
\begin{equation*}
T_{m}(x)=k x^{(k+1) / k} d T_{m-1}(x) / d x \tag{13}
\end{equation*}
$$

By hypothesis, $P_{m-1}(x)$, and hence $T_{m-1}(x)$, has $m-1$ real, distinct, and nonpositive roots. $T_{m-1}(x)$ also has a root at $-\infty$, and, by Rolle's theorem, between any two roots of $T_{m-1}(x), d T_{m-1}(x) / d x$ will have a root. This places $m-1$ distinct roots of $T_{m-1}(x)$ on the negative real axis; $x=0$ is obviously another one, making m altogether. This proves the result by induction.

Thus the above lemma, together with the inequality (10), provides us the following:
Theorem: For $m \geq 3, k=1,2, \ldots$, and $n=2,3, \ldots, m-1$, the associated Lah numbers $L_{k}(m, n)$ satisfy the inequality (5).

It may be remarked that, as a consequence of the above result and relation (4), we have the following:
Corollary: For $m \geq 3$, and $n=2,3, \ldots, m-1$, the Lah numbers $L(m, n)$ satisfy the inequality

$$
\begin{equation*}
[L(m, n)]^{2}>L(m, n+1) L(m, n-1) \tag{14}
\end{equation*}
$$

REFERENCES

1. J. C. Ahuja, "Distribution of the Sum of Independent Decapitated Negative Binomial Variables," Ann. Math. Statist. 42 (1971):383-384.
2. W. Feller, An Intorduction to Probability Theory and Its Applications (New York: Wiley, 1968).
3. G. H. Hardy, J.E. Littlewood, \& G. Ploya, Inequalities (Cambridge: The University Press, 1952).
4. J. Riordan, An Introduction to Combinatorial Analysis (New York: Wiley, 1958).
