FIBONACCI NUMBERS

J. C. de ALMEIDA AZEVEDO
 Universidade de Brasília, Brasil

The purpose of this paper is to derive a few relations involving Fibonacci numbers; these numbers are defined according to the expressions

$$
f_{n+1}=f_{n}+f_{n-1}, f_{0}=0, f_{1}=1
$$

due to Girard [1]. They can also be obtained from a known [2] matrix representation that we rederive in Part.II. In Part III we obtain the sum of two infinite series and some recurrence relations.

PART I: HISTORICAL NOTE
The sequence of integers $\left\{f_{n}\right\}$ was discovered by Leonardo Pisano [3, 4], in his Liber Abacci, as the solution to a hypothetical problem concerning the breeding of rabbits; in this problem, Pisano admitted that the rabbits never die, that each month every pair begets a new pair that becomes productive at the age of two months. The experiment begins in the first month with a newborn pair. Fibonacci numbers occur in many different areas. In geometry, for instance, in Euclid's golden section problem where the number $\frac{1}{2}(\sqrt{5}-1)$ appears. In the botanical phenomenon called phyllotaxis, where it is well known that in some trees the leaves are disposed in the spirals according to the Fibonacci sequence

$$
\frac{1}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \ldots, \frac{f_{n}}{f_{n+1}}
$$

that results from the expansion of $\frac{1}{2}(\sqrt{5}-1)$ in continued fractions. It is also known that in the sunflower the number of spirals usually present are the Fibonacci numbers 34 and 55; in the giant sunflower they are 55 and 89 , and recent experiments have reported that sunflowers of 89 and 144 as well as 144 and 233 spirals also exist. These are all Fibonacci numbers.

PART II: THEORY
Consider the numbers $f_{1}^{\prime}, k=0,1,2, \ldots$, defined by

$$
\left(\begin{array}{cc}
f_{k+1}^{\prime} & f_{k}^{\prime} \tag{2.1}\\
f_{k}^{\prime} & f_{k-1}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{k}
$$

For $k=1$, we have $f_{0}^{\prime}=f_{0}, f_{1}^{\prime}=f_{1}$, and $f_{2}^{\prime}=f_{2}$. Let us suppose that $f_{n}^{\prime}=f_{n}$ is valid for arbitrary n. It is easily seen from (2.1) that $f_{n}^{\prime}=f_{n}$ is also valid for $n \quad n+1$, since we have from (2.1) that

$$
. f_{n+2}^{\prime}=f_{n+1}+f_{n}=f_{n+2} ; f_{n+1}^{\prime}=f_{n}+f_{n-1}=f_{n+1}
$$

We see then that (2.1) defines the Fibonacci numbers f_{n}.
Define the matrices $F(n)$ and A according to the following expressions:

$$
F(n)=\left(\begin{array}{ll}
f_{n+1} & f_{n} \tag{2.2}\\
f_{n} & f_{n-1}
\end{array}\right)=A^{n} ; \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)
$$

It is easily proved that the above equation contains Lucas' definition of Fibonacci numbers:

$$
\begin{equation*}
f_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \tag{2.3}
\end{equation*}
$$

in fact, the eigenvalues of A are $\lambda_{1}=\frac{1}{2}(1+\sqrt{5})$ and $\lambda_{2}=\frac{1}{2}(1-\sqrt{5})$. We see therefore that the matrix that diagonalizes A is given by

$$
\begin{align*}
& U=\left(\begin{array}{ll}
\alpha_{1} \lambda_{1} & \alpha_{2} \lambda_{2} \\
\alpha_{1} & \alpha_{2}
\end{array}\right), \text { where } \alpha_{i}=\left(1+\lambda_{i}^{2}\right)^{-1 / 2}, \tag{2.4}\\
& U^{-1} A U=\Lambda=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) .
\end{align*}
$$

We have then, from (2.2),

$$
\begin{equation*}
F(n)=U \Lambda^{n} U^{-1} \tag{2.5}
\end{equation*}
$$

which explicitly reads as:

$$
\left(\begin{array}{ll}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\lambda_{1}^{n+1}-\lambda_{2}^{n+1} & \lambda_{1}^{n}-\lambda_{2}^{n} \\
\lambda_{1}^{n}-\lambda_{2}^{n} & \lambda_{1}^{n-1}-\lambda_{2}^{n-1}
\end{array}\right)
$$

PART III: SERIES AND RECURRENCE RELATIONS
From (2.2), we write the following expression:

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{1}{n!} F(n)=e^{A}-1 \tag{3.1}
\end{equation*}
$$

from which we infer that

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{1}{n!} U^{-1} F(n) U=e^{\Lambda}-1 \tag{3.2}
\end{equation*}
$$

The matrix elements are given by:

$$
\begin{align*}
& {\left[U^{-1} F(n) U\right]_{11}=\frac{1}{2}\left(f_{n+1}+f_{n-1}\right)+\frac{\sqrt{5}}{2} f_{n}=\alpha^{n} ;} \tag{3.3}\\
& {\left[U^{-1} F(n) U\right]_{12}=-\left[U^{-1} F(n) U\right]_{21}=\frac{\sqrt{5}}{2}\left(f_{n+1}-f_{n}-f_{n-1}\right)=0 ;} \\
& {\left[U^{-1} F(n) U\right]_{22}=\frac{1}{2}\left(f_{n+1}+f_{n-1}\right)-\frac{\sqrt{5}}{2} f_{n}=\beta^{n} .}
\end{align*}
$$

From (3.1), the following series are derived:

$$
\begin{align*}
& \sum_{0}^{\infty} \frac{1}{n!} f_{n}=\frac{2 e^{1 / 2}}{\sqrt{5}} \sinh \left(\frac{\sqrt{5}}{2}\right) \tag{3.4}\\
& \sum_{0}^{\infty} \frac{1}{n!}\left(f_{n+1}+f_{n-1}\right)=2 e^{1 / 2} \cosh \left(\frac{\sqrt{5}}{2}\right)
\end{align*}
$$

where we extended Fibonacci numbers to negative values according to

$$
f_{-n}=(-1)^{n+1} f_{n}
$$

We now set $A=1+B$ in (2.2) to obtain

$$
\begin{equation*}
F(n)=\sum_{0}^{n}\binom{n}{k} B^{k} . \tag{3.5}
\end{equation*}
$$

B^{k} can be easily evaluated if we use Cauchy's integral

$$
B^{k}=(2 \pi i)^{-1} \int(d Z) Z^{k}(Z-B)^{-1}
$$

B^{k} is given by

$$
B^{k}=F(k)^{-1}=\left(\begin{array}{ll}
f_{k-1} & -f_{k} \tag{3.6}\\
-f_{k} & f_{k+1}
\end{array}\right)(-1)^{k}
$$

Therefore, we have the following recurrence relations that also define Fibonacci numbers if we add to them the appropriate boundary conditions

$$
f_{0}=0, f_{1}=1:
$$

$$
\begin{align*}
& f_{n \pm 1}=\sum_{0}^{n}(-1)^{k}\binom{n}{k} f_{k \pm 1} \tag{3.7}\\
& f_{n}=\sum_{0}^{n}(-1)^{k+1}\binom{n}{k} f_{k} .
\end{align*}
$$

If we multiply (2.2) by $(-1)^{n} F(n)^{-1}$, we obtain the following orthogonality relations:

$$
\begin{align*}
& \sum_{0}^{n}(-1)^{k}\binom{n}{k} f_{n+k \pm 1}=(-1)^{n} \tag{3.8}\\
& \sum_{0}^{n}(-1)^{k}\binom{n}{k} f_{n+k}=0
\end{align*}
$$

Many important relations can be easily obtained from (2.2), and we just list a few of them.

The determinant of (2.2) gives

$$
f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}
$$

Setting $n=j+k$ and $A^{n}=A^{j} A^{k}$ in (2.2) gives the following well-known recurrence relations:

$$
\begin{align*}
f_{j+k \pm 1} & =f_{j \pm 1} f_{k \pm 1}+f_{j} f_{k} ; \tag{3.9}\\
f_{j+k} & =f_{j+1} f_{k}+f_{j} f_{k+1} .
\end{align*}
$$

From the above, or from $F(n p)=F(n)^{p}$, we are also able to obtain other familiar expressions such as:

$$
\begin{align*}
f_{2 n \pm 1} & =f_{n}^{2}+f_{n \pm 1}^{2} ; \tag{3.10}\\
\frac{f_{2 n}}{f_{n}} & =f_{n+1}+f_{n-1} \\
f_{3 n} & =f_{n+1}^{3}+f_{n}^{3}-f_{n-1}^{3} ; \\
\frac{f_{3 n}}{f_{n}} & =2 f_{n+1}^{2}+f_{n}^{2}+f_{n+1} f_{n-1} .
\end{align*}
$$

REFERENCES

1. A. Girard, L'Arithmétique de Simon Steven de Bruges (Leiden, 1634).
2. D. E. Knuth, Fundamental Algorithms: The Art of Computer Programming, I (1969).
3. H. S. M. Coxeter, "The Golden Section, Phyllotaxis and Wythoff's Game," Scripta Mathematica 19 (1953).
4. R. J. Webster, "The Legend of Leonardo of Pisa," Mathematical Spectrum 3, No. 2-(1970/71).

A NOTE ON BASIC M-TUPLES

NORMAN WOO
California State University, Fresno, Fresno, CA 93710
Definition 1: A set of integers $\left\{b_{i}\right\}_{i \geq 1}$ will be called a base for the set of all integers, whenever every integer n can be expressed uniquely in the form

$$
n=\sum_{i=1}^{\infty} a_{i} b_{i}, \text { where } a_{i}=0 \text { or } 1 \text { and } \sum_{i=1}^{\infty} a_{i}<\infty .
$$

Now, a sequence $\left\{d_{i}\right\}_{i \geq 1}$ of odd numbers will be called basic whenever the sequence $\left\{d_{i} 2^{i-1}\right\}_{i \geq 1}$ is a base. If the sequence $\left\{d_{i}\right\}_{i \geq 1}$ of odd integers is such that $d_{i+\varepsilon}=d_{i}$ for all i s, then the sequence i s said to be periodic mod s and is denoted by $\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{s}\right\}$. In reference [2], I have obtained some results concerning nonbasic sequence with periodicity mod 3 or nonbasic triples. In this paper, we are concerned with basic sequence.
Theorem 1: A necessary and sufficient condition for the sequence $\left\{d_{i}\right\}_{i \geq 1}$ of odd integers, which is periodic mod s, to be basic is that

