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(6) a_k + i - hi = 2ci + •••. + 2m-2ri for all i . 

Possibilities for a_k + i - bi are 0, 1, and -1. But the right-hand side of (6) 
is divisible by 2. Hence, we must have that a_k + t - b± ~ 0 for all i . Since 
a„k + t = 0 for all i, this implies that bi = 0 for all i and hence that Ci = 
0, ..., vi = 0 for all i . But since this contradicts Theorem 1.8, it follows 

that the m-tuple 2m +1 - 1, -1, -1, ..., -1 is basic as claimed. 
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1. INTRODUCTION 

In [4] W. Sierpinski proves that there are an infinite number of Pytha-
gorean triples in which two members are triangular and the hypotenuse is an 
integer. [A number Tn is triangular if Tn is of the form Tn = n(n + l)/2 
for some integer n. A Pythagorean triple is a set of three integers x, y, z 
such that x2 + y2 - z2.] Further, Sierpinski gives an example due to Zaran-
kiewicz, 

T132 = 8778, Tllt3 = 10296, and Tl6h = 13530, 

in which every member of the Pythagorean triple is triangular. He states that 
this is the only known nontrivial example of this phenomenon, and that it is 
not known whether the number of such triples is finite or infinite. 

This paper will give some partial results related to the above problem. 
In particular, we will give necessary and sufficient conditions for the ex-
istence of Pythagorean triples in which all members are triangular. We will 
extend these conditions to discuss the problem of triangulars being repre-
sented as sums of powers. 

2. PYTHAGOREAN TRIPLES WITH TRIANGULAR SOLUTIONS 

By a triangular solution to a Diophantine equation f(x , ..., xn) - 0, 
we mean a solution in which every variable is triangular. 

ThdQtKim 1: The Pythagorean equation x2 + y2 = z2 has a triangular solution 
x - Ta , y - Tb , z = T0 if and only if there exist integers m and k such that 

m + (m + 1) 3 + • • • + (m + k) 3; 

that is, T£ is a sum of k 4- 1 consecutive cubes. 
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Pfioofi: It is a known formula that 

k = 0 
So if 

with a <_b, then 

Tl + Tl = Tl 

k = a +1 

To show the converse, we need only reverse the steps. Q.E.D.. 

Using Zarankiewicz's example, we can note that T^h3 is a sum of 31 cubes; 
i.e., 
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n>. - £ *3-
-fc - 1 3 3 

3. TRIANGULARS AS CUBES AND SUMS OF CUBES 

We first show that a triangular cannot be a cube. This is an old result, 
first proved by Euler in 1738 [2]. However, it is so closely related to our 
work that we will include a proof here. 

Ltmma 2: The triangular Tn is a fcth power if and only if T\ is a kth power. 

VKOO^I This is an easy exercise using the fact that every integer has a 
unique decomposition into primes. 

Lemma, 3-' The equality Tn = mk holds nontrivially if and only if the equa-
tions xk - 2yk = ±1 have nontrivial solutions. Take the plus sign if n is 
even and the minus sign if n is odd. 

VKOOJ- L e t 
n{n + 1) 

1 n 2 k' 

C l e a r l y (ft, ft + 1) = 1. Let ft =. 2 j ; then 

( 2 J ) ( 2 J + l ) / 2 = m*. 

Thus t h e r e a r e i n t e g e r s a; and 2/ such t h a t j - y and 2 j + 1 = xk; whence 

xk _ 2z/fe = 1 . 

Now let n = 2j - 1. In the same way as above, there are integers y9 x such 
that j* = yk, 2j - 1 = x^5 and .a?* - 2yk = -1. 

Since the steps are reversible, the converse is easily proved. Q.E.D. 

Thz.0H.2m 4: There is no triangular number greater than 1 which is a cube.1 " 

VH.OQ&: If Tn = w3, then by Lemma 3, x3 - 2z/3 = -1 has a solution. However, 
by [1, p. 72], x3 - 2y3 = 1 has only x = -1, y = 0 as solutions. Hence, by 
the construction in Lemma 3,ft=lorO.Q.E.D. 

We will now state, without proof, a theorem due to Siegel which will be, 
of utmost importance in that which follows. 
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Tknotim 5: (Siegel [3, p. 264]) The equation 

y2 = aQxn + a^x71'1 + ... + an 

has only a finite number of integer solutions if the right-hand side has at 
least three different linear factors. 

We can immediately apply this theorem in the proof of the following re-
sult. 

T/ieô em 6** For a fixed k9 there are only a finite number of sums of k con-
secutive cubes which can be the square of a triangular number. For every /c, 
there is at least one such sum which is the square of a triangular. 

Vh.00^1 The last statement follows from the identity 

n = 0 

To prove the first statement we consider two cases. Assume k = 21 + 1. 
Consider the equation 

I 
(1) T\ = £ (rn + J ) 3 . 

j--z-

W.e want to show that this equation has only a finite number of solutions in 
n and m. We have 

Z 
(2) T2 = ̂ 2 0" + j) 3 = ̂ 3 + Bm AZ + 0 

d"'1 = m(Am2 + B). 

Now Am2 + B is never a square since {am + 2?) always has a first-degree term. 
Thus, equation (2) has no squared linear factors on its right-hand side, and 
by Theorem 5 it has only a finite number of solutions. 

If k = 2Z-, we consider 
l + i 

(3) T2 = £ (m + J ) 3 

= {1L + l)m3 + L(L - I)(2L + l)m + (w 4- L - 1) 3 

= (L + 1)(2/T?3 + 3/7?2 + (2L2 + 4L +. 3)TW + {L + l)2). 

To show that the right-hand side does not have a square linear factor, we 
show that it and its derivative, 

6m2 + 6m + (2L2 + 4L + 3) : 

have a greatest common divisor of 1. This is an easy application of the Eu-
clidean algorithm. Hence, using Theorem 5, equation (3) has only a finite 
number of integral solutions. Q.E.D. 

Combining Theorems 1 and 6, we have a type of finiteness condition for 
all members of a Pythagorean triple to be triangular. Of course, the k can 
vary, so we do not have the condition that only a finite number of such tri-
ples exist, but that for a fixed /<, only a finite number exist. 
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4. TRIANGULARS AND SUMS OF HIGHER POWERS 

We can prove theorems similar to Theorems 4 and 6 for higher powers. 

ThdQfim 7: The equations Tn = mh and Tn = m5 are impossible for n > 1. 

TtlOOl'. This follows from Lemma 3 and the fact that the equations 

xk - 2yh = ±1 and x5 - 2y5 = ±1 

have no nontrivial solutions [1]. Q.E.D. 

Theorem 7 was first stated by Fermat in 1658, but he apparently gave no 
proof; at least none has been found. The first proof was given by Euler [3]. 

TktOKUm 8: For a fixed k9 the equations 

and 
k 

i-0 

have only a finite number of solutions. 

VKOO^i These statements are proven using techniques completely similar to 
the proof of Theorem 6. Greatest common divisor calculations are extremely 
complicated and are therefore omitted. Q.E.D. 

The techniques of Theorem 6 appear to apply to even higher powers. How-
ever, there does not appear to be a general method of handling all such cases 
simultaneously because of the differences of the equations and the deriva-
tives. 

5. THE EQUATION T(n+l)* = k1 

The theorems of this section digress from the main topics of this paper, 
but they are included as nice illustrations of the use of Theorem 5. 

Tk&OH.em 9: The equation T(n + 1^ = k2 has only a finite number of solutions. 

VKooji If (n + l)2((n + l) 2 + l)/2 = k2, then 

(4) 2k2 = n1 + 4n3 + 7n2 + 6n + 2. 

The derivative of the right-hand side is 

4n3 + 12n2 + 14n + 6 = 2(n + 1)(2n2 + 4n + 3). 

It is easy to check that no root of the derivative is a root of equation (4), 
so equation (4) has no squared factor. Hence, by Theorem 5, there are only 
a finite number of solutions to the equation of the theorem. Q.E.D. 

Note that T(1) = (l)2 and T(7)z = (35)2. 

In [4] Sierpinski shows that the equation 

(T2U)2 + (T2u+1)2 = [(2w + l)v]2 

with V - u + (u + 1) has only a finite number of solutions. Since we have 
that the identity 



172 EXTENSIONS OF THE W. MNICH PROBLEM [April 

(T2u + 0 + (^2M) " (̂2w + l)2 

holds, we have the following theorem. 

TktOK.(im 10: The equation 

(2w+l) 

(u + ] 

VKoai} Use Theorem 9. 

T(2u+rt*- = t(2" + D y ] 2 

with V - u + (u + 1) has only a finite number of solutions. 
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ABSTRACT 

W. Sierpinski publicized the following problem proposed by Werner Mnich 
in 1956: Are there three rational numbers whose sum and product are both one! 
In 1960, J. W. S. Cassels proved that there are no rationals that meet the 
Mnich condition. This paper extends the Mnich problem to fc-tuples of ration-
als whose sum and product are one by providing infinite solutions for all 
k > 3. It also provides generating forms that yield infinite solutions to 
the original Mnich problem in real and complex numbers, as well as providing 
infinite solutions for rational sums and products other than one. 

HISTORICAL OVERVIEW 

Sierpinski [6] cited a question posed by Werner Mnich as a most inter-
esting problem, and one that at that time was unsolved. The Mnich question 
concerned the existence of three rational numbers whose sum and product are 
both one: 

(1) x + y + z = xyz,= 1 (x, y, z rational). 

Cassels [1] proved that there are no rationals that satisfy the conditions 
of (1). Cassels also shows that this problem was expressed by Mordell [3], 
in equivalent, if not exact form. Additionally, Cassels has compiled an ex-
cellent bibliography that demonstrates that the "Mnich" problem has its roots 
in the work of Sylvester [13] who in turn obtained some results from the 1870 
work of the Reverend Father Pepin. Sierpinski [9] provides a more elementary 
proof of the impossibility of a weaker version of (1) , along with an excel-
lent summary of some of the equivalent forms of the "Mnich" problem. Later, 
Sansone and Cassels [4] provided another proof of the impossibility of (1). 


