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and since ( — J = ( — ) = -1, (13) is impossible. 

(q) (13) is impossible if n ~ 7 (mod 10), for, using (11) in this case 
un E u7 (mod T]5) 

E 37 (mod 11) 
= 26 (mod 11). 

Thus, 
u 
-y' = 13 (mod 11), since (2,11) = 1, 

and since (yy) = -1, (13) is impossible. 

(r) (13) is impossible if n = 9 (mod 10), for, using (11) we find that 

un E us (mod r)5) 
E 97 (mod 11) 
= 86 (mod 11). 

Thus, we find that 

-— = 43 (mod 11), since (2,11) = 1, 

and since (TT") = -1, (13) is impossible. 

Hence, none of the pseudo-Fibonacci numbers are of the form 2S2, where S is 
an integer. 
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In [7], D. A. Millin poses the problem of showing that 

/5 (i) E C =z 
n 2 

n = 0 

where F^ is the fcth Fibonacci number. A proof of (1) by I. J. Good is given 
in [5], while in [3], Hoggatt and Bicknell demonstrate ten different methods 
of finding the same sum. Furthermore, the result of (1) is extended by Hog-
gatt and Bicknell in [4], where they show that 
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(2) 
or + 1 

a(a 2k 1) 

The main purpose of this paper is to lift the results of (1) and (2) to 
the sequence of Fibonacci polynomials <Fk(x)>°° defined recursively by 

2^ fa) = 1, Fz(x) = x, Fk + 2(x) = xFk+1(x) + Fk fa), k >_ 1. 

Furthermore, we will examine several infinite series containing products of 
Fibonacci and Lucas polynomials where the Lucas polynomials are defined by 

M * > = Fk+iW + *k-ifa). 

If we let a fa) = fa + A 2 + 4)/2 and 3(a;) = fa - /r2 + 4)/2, then it is 
a well-known fact that 

(3) Fk(x) = [ak(x) - $k(x)]/[a(x) - $(x)] 

and 

(4) 

When x > 0 , we have - 1 < 3fa) < 1 and a(x) > 1 so t h a t | 3 f a ) / a f a ) | < 1 
and l i m [ 3 f a ) / a f a ) ] n = 0. But , from ( 3 ) , we o b t a i n 

Lk(x) = ak(x) + 3 f e fa) . 

(5) 

T h e r e f o r e , 

(6) 

a**1 fa) - 3* + 1 f a ) *Vx+lfa) 
^nfa) ~ a

n f a ) - 3* fa) 
a fa ) - 3fa) 

1 - [ B f a ^ f a ) ] " 
+ 3 (a?). 

l im a f a ) , i f x > 0. n+~ ^n fa) 
When x < 0 , we have 0 < a fa ) < 1 and 30*0 < - 1 so t h a t $(x)/a(x) < - 1 . 

From ( 5 ) , we see t h a t 
F n + 1 f a ) 

(7) 

and 

l im 3 fa), i f x < 0. n+oo F„ fa) 

Using (3) and ( 4 ) , i t i s easy to show t h a t 
Ln + k(x) + Ln__k(x) = Ln(x)Lk(x), k even 

F2n(x) = Ln(x)Fn(x). 

Letting Sn be the nth partial sum of 

E < » * <*> 
n = l 

and using the two preceding equations with induction, it can be shown that 

£„ = x 
F2„k (x) L-d 2n 

t = 1 
2"/c- 2kt fa) +.1 

The d e f i n i t i o n of Lk(x) t o g e t h e r w i th (6) enab le s us t o show for x > 0 
t h a t 

l im £ a2(x) + 1 

t - i a -

[a2 fa)- + lja; 
2fc Lfa) a f a ) [a fa) - 1] 
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while for x < 0 we use (7) to obtain 

r^ g2 (x) + 1 _ [&2(x) '+ l]x i • o \~^ £> {X) -t 
l im Sn = x) *—̂  

t = i 3 2 k t + 1fe) e(x)[32fcte) - i] 
Hence, 

- ( ["(a2 (a?) + l)x}l\a(x)(oi2k(x) - 1 ) 1 , a? > 0 
(8) )xF~ (x) = - + < ' 

- o Z"k F W ( [(^(x) + l)x]/[B(x)(^k(x) - 1)], x <o' 

We now examine the infinite series 

(9) U(q,a,b,x) = 2- v oF)F M ' 4 = b - a + k. 

First observe that, by using (3) and (4), we can show 

( 1 ° ) Fqn + aWFqn+bW " *?» + a - k&)Fqn + b + , ( x ) = ( - I ) " 1 + ° " " ^ ( x ) F , . Q + , ( * ) . 

Letting Sn be the nth partial sum of (9) and using (10), we notice that there 
is a telescoping effect so that 

_ h + k ^ _ Fqn+b + k(.x) 
Sn ~ Fb&) ~ Fqn+b{x) • 

Hence, by (6) and ( 7 ) , we have 
Fb + k(x) ( ak(x), x > 0 

(11) U(q9a,b,x) = M - { 
*b w { $k{x)\ x < 0 

where q = b - a + k. In particular, we see that 

- (-l)anF*(x) ( ̂ a(x), x > 0 
(12) U(a,a,a,x) = } ^ ™—7~TB 73T = La(x) - < 

^ ±an{x)ta(n + 1){x) ^ 3a(x), x < 0 

(13) ffW'1's)'?l^&- { 
3(x), r̂ > 0 

a(x), x < 0 

2 ( ̂ 2 - #a(#) + 1, x > 0 
(14) [7(2,2,2,*) = E y - 7 ^ ) f (^T= i 2 

„ = 1^2n^^2(n + l ) W ( X 2 - ^3(^) + 1, X < 0 

and 
- (~l)bnFb(x) Fb+l(x) . (a(x),x>0 

(15) u ( b 9 l 9 b 9 X ) =^j-^p M=TW--
„-l ^ i n ^ ^ M n + D ^ ; ^ £ W (&(x)9X<0 

If we combine (13) and (14) with the identity 

L2n+1(x) = Ln(x)Ln+1(x) 

we obtain the very interesting result 

L2n+1(x) = Ln(x)Ln+1(x) + (-l)n+1x 
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t (-1>"'i-fa) * jfri F2n(^)^2(n + 1)(^) X 

Next, we examine the infinite series 

- (x2 + V(-Dqn + a-kFk(x)Fb_a + k(x) 
(17) V(q,a,b,x) = - £ Lqn + a.k(x)Lqn + b(x) ' 

n = 1 ^ 

(7 = 2? - a + fc. 

To do this, we first use (3) and (4) to show that 

(18) Lqn + a(x)Lqn + b(x) - Lqn + a_k(x)Lqn + b + k(x) 

= -(x2 + V(-Dqn + a'kFk(x)Fb_a + k(x). 

Letting Sn be the nth partial sum of (17) and using (18) , we notice that there 
is a telescoping effect so that 

^b+k(X^ ^qn + b + k(x) 

Fb(x) Lqn+b(x) 

Using the definition of Lm(x) together with (6) and (7), we obtain 

£<\ + k(x) (ak(x), x > 0 
(19) V(q,a9b9x) = ~ , - < 

jUb^X) { $k(x), x < 0 
where q = b - a + k. In particular, we note that 

,2 , /, w -i \an -rnl - {xA + h)(-±)anFA
a(x) L2a(x) C aa(x), x > 0 

(20) V(a,a,a,x) =-V —-—-r-rj T-T— = . , - ̂  

. (x2 + L)(-l)bnFb(x) L (x) (a(x),x>0 
(21) v{b,i,b9x) = - £ - ( g ) L ST" = -TT^T " 1 

In conclusion, we observe that 

(22) ^n-i^^n + i^) " Fn + 2(x)Fn_2(x) = ("Dn(^2 + D-

Letting Sn be the nth partial sum of 

y* (-l)n(x2 + 1) 

^ r i ^ + i ^ ) ^ » + 2 ^ ) 

and u s i n g (22) , we see t h a t 

F - i f e ) Fn,l(x) 1 Fn_1(x) 
n F2(x) Fn + 2(x) x Fn + 2(x) 

so t h a t 

, , „ y (-i)"(«2 + i) 1 i e 3 ( x ) ' x > 0 
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ABSTRACT 

Under the assumption that all of the 3-2 trees of height h are equally 
probable, it is shown that in a 3-2 tree of height h the expected number of 
keys is (.72162)3^ and the expected number of internal nodes is (.48061)3^. 

INTRODUCTION 

One approach to the organization of large files is the use of "balanced" 
trees (see Section 6.2.3 of [3]). In particular, one such class of trees, 
suggested by J. E. Hopcroft (unpublished), is known as 3-2 trees. A 3-2 tree 
is a tree in which each internal node contains either 1 or 2 keys and is hence 
either a 2-way or 3-way branch, respectively. Furthermore, all external nodes 
(i.e., leaves) are at the same level. Figure 1 shows some examples of 3-2 
trees. 

Insertion of a n-ew key into a 3-2 tree is done as follows to preserve 
the 3-2 property: To add a new key into a node containing one key, simply 
insert it as the second.key; if the node already contains two keys, split it 
into two one-key nodes and insert (recursively) the middle key into the par-
ent node. This may cause the parent node to be split in a similar way, if it 
already contains two keys. For more details about 3-2 trees see [1] and [3]. 
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