and since
$$\left(\frac{-2}{5}\right) = \left(\frac{2}{5}\right) = -1$$
, (13) is impossible.

(q) (13) is impossible if $n \equiv 7 \pmod{10}$, for, using (11) in this case $u_n \equiv u_7 \pmod{\eta_5}$ $\equiv 37 \pmod{11}$ $\equiv 26 \pmod{11}.$

Thus,

 $\frac{u_n}{2} \equiv 13 \pmod{11}, \text{ since } (2,11) = 1,$ and since $\left(\frac{13}{11}\right) = -1$, (13) is impossible.

(r) (13) is impossible if $n \equiv 9 \pmod{10}$, for, using (11) we find that

\mathcal{U}_n	Ξ	Ug	(mod	η ₅)
	Ш	97	(mod	11)
	Ξ	86	(mod	11).

Thus, we find that

$$\frac{u_n}{2} \equiv 43 \pmod{11}, \text{ since } (2,11) = 1,$$

and since $\binom{43}{11} = -1$, (13) is impossible.

Hence, none of the pseudo-Fibonacci numbers are of the form $2S^2$, where S is an integer.

REFERENCE

A. Eswarathasan, "On Square Pseudo-Fibonacci Numbers," *The Fibonacci Quarterly* 16, No. 4 (1978):310-314.

INFINITE SERIES WITH FIBONACCI AND LUCAS POLYNOMIALS

GERALD E. BERGUM

South Dakota State University, Brookings, SD 57006

and

VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95192

In [7], D. A. Millin poses the problem of showing that

(1)
$$\sum_{n=0}^{\infty} F_{2^n}^{-1} = \frac{7 - \sqrt{5}}{2}$$

where F_k is the *k*th Fibonacci number. A proof of (1) by I. J. Good is given in [5], while in [3], Hoggatt and Bicknell demonstrate ten different methods of finding the same sum. Furthermore, the result of (1) is extended by Hoggatt and Bicknell in [4], where they show that

INFINITE SERIES WITH FIBONACCI AND LUCAS POLYNOMIALS

[April

(2)
$$\sum_{n=0}^{\infty} F_{2^{n_k}}^{-1} = \frac{1}{F_k} + \frac{\alpha^2 + 1}{\alpha(\alpha^{2k} - 1)}.$$

The main purpose of this paper is to lift the results of (1) and (2) to the sequence of Fibonacci polynomials $\{F_k(x)\}_{k=1}^{\infty}$ defined recursively by

$$F_1(x) = 1, F_2(x) = x, F_{k+2}(x) = xF_{k+1}(x) + F_k(x), k \ge 1.$$

Furthermore, we will examine several infinite series containing products of Fibonacci and Lucas polynomials where the Lucas polynomials are defined by

$$L_k(x) = F_{k+1}(x) + F_{k-1}(x).$$

If we let $\alpha(x) = (x + \sqrt{x^2 + 4})/2$ and $\beta(x) = (x - \sqrt{x^2 + 4})/2$, then it is a well-known fact that

(3)
$$F_k(x) = [\alpha^k(x) - \beta^k(x)] / [\alpha(x) - \beta(x)]$$

and

(4)
$$L_k(x) = \alpha^k(x) + \beta^k(x).$$

When x > 0, we have $-1 < \beta(x) < 1$ and $\alpha(x) > 1$ so that $|\beta(x)/\alpha(x)| < 1$ and $\lim_{n \to \infty} [\beta(x)/\alpha(x)]^n = 0$. But, from (3), we obtain

(5)
$$\frac{F_{n+1}(x)}{F_n(x)} = \frac{\alpha^{n+1}(x) - \beta^{n+1}(x)}{\alpha^n(x) - \beta^n(x)} = \frac{\alpha(x) - \beta(x)}{1 - [\beta(x)\alpha^{-1}(x)]^n} + \beta(x).$$

Therefore,

(6)
$$\lim_{n\to\infty} \frac{F_{n+1}(x)}{F_n(x)} = \alpha(x), \text{ if } x > 0.$$

When x < 0, we have $0 < \alpha(x) < 1$ and $\beta(x) < -1$ so that $\beta(x)/\alpha(x) < -1$. From (5), we see that

(7)
$$\lim_{n\to\infty}\frac{F_{n+1}(x)}{F_n(x)} = \beta(x), \text{ if } x < 0.$$

Using (3) and (4), it is easy to show that

$$L_{n+k}(x) + L_{n-k}(x) = L_n(x)L_k(x)$$
, k even

and

$$F_{2n}(x) = L_n(x)F_n(x).$$

Letting S_n be the *n*th partial sum of

$$\sum_{n=1}^{\infty} x F_{2^{n_k}}^{-1} (x)$$

and using the two preceding equations with induction, it can be shown that

$$S_n = \frac{x}{F_{2^n k}(x)} \left[\sum_{t=1}^{2^{n-1}-1} L_{2^n k - 2kt}(x) + 1 \right].$$

The definition of $L_k\left(x
ight)$ together with (6) enables us to show for $x \ge 0$ that

$$\lim_{n \to \infty} S_n = x \sum_{t=1}^{\infty} \frac{\alpha^2(x) + 1}{\alpha^{2kt+1}(x)} = \frac{[\alpha^2(x) + 1]x}{\alpha(x)[\alpha^{2k}(x) - 1]}$$

148

while for x < 0 we use (7) to obtain

$$\lim_{n \to \infty} S_n = x \sum_{t=1}^{\infty} \frac{\beta^2(x) + 1}{\beta^{2kt+1}(x)} = \frac{[\beta^2(x) + 1]x}{\beta(x)[\beta^{2k}(x) - 1]}$$

Hence,

(8)
$$\sum_{n=0}^{\infty} x F_{2^n k}^{-1}(x) = \frac{x}{F(x)} + \begin{cases} \left[\left(\alpha^2(x) + 1 \right) x \right] / \left[\alpha(x) \left(\alpha^{2k}(x) - 1 \right) \right], & x > 0 \\ \left[\left(\beta^2(x) + 1 \right) x \right] / \left[\beta(x) \left(\beta^{2k}(x) - 1 \right) \right], & x < 0 \end{cases}$$

We now examine the infinite series

(9)
$$U(q,a,b,x) = \sum_{n=1}^{\infty} \frac{(-1)^{q_n+a-k} F_{b-a+k}(x) F_k(x)}{F_{q_n+a-k}(x) F_{q_n+b}(x)}, q = b - a + k.$$

First observe that, by using (3) and (4), we can show

(10)
$$F_{qn+a}(x)F_{qn+b}(x) - F_{qn+a-k}(x)F_{qn+b+k}(x) = (-1)^{qn+a-k}F_k(x)F_{b-a+k}(x).$$

Letting S_n be the *n*th partial sum of (9) and using (10), we notice that there is a telescoping effect so that

$$S_{n} = \frac{F_{b+k}(x)}{F_{b}(x)} - \frac{F_{qn+b+k}(x)}{F_{qn+b}(x)} .$$

Hence, by (6) and (7), we have

(11)
$$U(q,a,b,x) = \frac{F_{b+k}(x)}{F_b(x)} - \begin{cases} \alpha^k(x), x > 0 \\ \beta^k(x), x < 0 \end{cases}$$

where q = b - a + k. In particular, we see that

(12)
$$U(a,a,a,x) = \sum_{n=1}^{\infty} \frac{(-1)^{an} F_a^2(x)}{F_{an}(x) F_{a(n+1)}(x)} = L_a(x) - \begin{cases} \alpha^a(x), \ x > 0 \\ \beta^a(x), \ x < 0 \end{cases}$$

(13)
$$U(1,1,1,x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{F_n(x)F_{n+1}(x)} = \begin{cases} \beta(x), \ x > 0\\ \alpha(x), \ x < 0 \end{cases}$$

(14)
$$U(2,2,2,x) = \sum_{n=1}^{\infty} \frac{x^2}{F_{2n}(x)F_{2(n+1)}(x)} = \begin{cases} x^2 - x\alpha(x) + 1, \ x > 0 \\ x^2 - x\beta(x) + 1, \ x < 0 \end{cases},$$

and

(15)
$$U(b,1,b,x) = \sum_{n=1}^{\infty} \frac{(-1)^{bn} F_b(x)}{F_{bn}(x) F_{b(n+1)}(x)} = \frac{F_{b+1}(x)}{F_b(x)} - \begin{cases} \alpha(x), \ x > 0\\ \beta(x), \ x < 0 \end{cases}.$$

If we combine (13) and (14) with the identity $L_{2n+1}(x) = L_n(x)L_{n+1}(x) + (-1)^{n+1}x$

we obtain the very interesting result

(16)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} L_{2n+1}(x)}{F_{2n}(x) F_{2(n+1)}(x)} = \frac{1}{x}.$$

Next, we examine the infinite series

(17)
$$V(q,a,b,x) = -\sum_{n=1}^{\infty} \frac{(x^2 + 4)(-1)^{qn+a-k}F_k(x)F_{b-a+k}(x)}{L_{qn+a-k}(x)L_{qn+b}(x)},$$
$$a = b - a + k.$$

To do this, we first use (3) and (4) to show that

(18)
$$L_{qn+a}(x)L_{qn+b}(x) - L_{qn+a-k}(x)L_{qn+b+k}(x)$$
$$= -(x^{2} + 4)(-1)^{qn+a-k}F_{k}(x)F_{b-a+k}(x).$$

Letting S_n be the *n*th partial sum of (17) and using (18), we notice that there is a telescoping effect so that

$$S_{n} = \frac{L_{b+k}(x)}{L_{b}(x)} - \frac{L_{qn+b+k}(x)}{L_{qn+b}(x)} .$$

Using the definition of $L_m(x)$ together with (6) and (7), we obtain

(19)
$$V(q,a,b,x) = \frac{L_{b+k}(x)}{L_b(x)} - \begin{cases} \alpha^k(x), \ x > 0 \\ \beta^k(x), \ x < 0 \end{cases}$$

where q = b - a + k. In particular, we note that

(20)
$$V(\alpha, \alpha, \alpha, x) = -\sum_{n=1}^{\infty} \frac{(x^2 + 4)(-1)^{an} F_a^2(x)}{L_{an}(x) L_{a(n+1)}(x)} = \frac{L_{2a}(x)}{L_a(x)} - \begin{cases} \alpha^a(x), \ x > 0\\ \beta^a(x), \ x < 0 \end{cases},$$

(21)
$$V(b,1,b,x) = -\sum_{n=1}^{\infty} \frac{(x^2+4)(-1)^{bn}F_b(x)}{L_{bn}(x)L_{b(n+1)}(x)} = \frac{L_{b+1}(x)}{L_b(x)} - \begin{cases} \alpha(x), \ x > 0\\ \beta(x), \ x < 0 \end{cases}$$

In conclusion, we observe that

(22)
$$F_{n-1}(x)F_{n+1}(x) - F_{n+2}(x)F_{n-2}(x) = (-1)^n (x^2 + 1).$$

Letting S_n be the *n*th partial sum of

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x^2 + 1)}{F_{n+1}(x)F_{n+2}(x)}$$

and using (22), we see that

$$S_{n} = -\frac{F_{-1}(x)}{F_{2}(x)} + \frac{F_{n-1}(x)}{F_{n+2}(x)} = -\frac{1}{x} + \frac{F_{n-1}(x)}{F_{n+2}(x)}$$

so that

.

.

(23)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x^2 + 1)}{F_{n+1}(x)F_{n+2}(x)} = -\frac{1}{x} - \begin{cases} \beta^3(x), \ x > 0 \\ \alpha^3(x), \ x < 0 \end{cases}$$

150

REFERENCES

- 1. G. E. Bergum & A. W. Kranzler, "Linear Recurrences, Identities and Divisibility Properties" (unpublished paper).
- Marjorie Bicknell & V. E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers," The Fibonacci Association, San Jose State University, San Jose, California.
- 3. Marjorie Bicknell-Johnson & V. E. Hoggatt, Jr., "Variations on Summing a Series of Reciprocals of Fibonacci Numbers," *The Fibonacci Quarterly* (to appear).
- Marjorie Bicknell-Johnson & V. E. Hoggatt, Jr., "A Reciprocal Series of Fibonacci Numbers with Subscripts 2ⁿk," The Fibonacci Quarterly (to appear).
- 5. I. J. Good, "A Reciprocal Series of Fibonacci Numbers," *The Fibonacci Quarterly* 12, No. 4 (1974):346.
- 6. I. J. Good & Paul S. Bruckman, "A Generalization of a Series of De Morgan with Applications of Fibonacci Type," *The Fibonacci Quarterly* (to appear).
- 7. D. A. Millin, Problem H-237, The Fibonacci Quarterly 12, No. 3 (1974): 309.

A NOTE ON 3 - 2 TREES*

EDWARD M. REINGOLD

University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

Under the assumption that all of the 3-2 trees of height h are equally probable, it is shown that in a 3-2 tree of height h the expected number of keys is $(.72162)3^h$ and the expected number of internal nodes is $(.48061)3^h$.

INTRODUCTION

One approach to the organization of large files is the use of "balanced" trees (see Section 6.2.3 of [3]). In particular, one such class of trees, suggested by J. E. Hopcroft (unpublished), is known as 3-2 trees. A 3-2 tree is a tree in which each internal node contains either 1 or 2 keys and is hence either a 2-way or 3-way branch, respectively. Furthermore, all external nodes (i.e., leaves) are at the same level. Figure 1 shows some examples of 3-2 trees.

Insertion of a new key into a 3-2 tree is done as follows to preserve the 3-2 property: To add a new key into a node containing one key, simply insert it as the second key; if the node already contains two keys, split it into two one-key nodes and insert (recursively) the middle key into the parent node. This may cause the parent node to be split in a similar way, if it already contains two keys. For more details about 3-2 trees see [1] and [3].

^{*}This research was supported by the Division of Physical Research, U.S. Energy Research and Development Administration, and by the National Science Foundation (Grant GJ-41538).