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Note the relationship to Stern numbers when expanding f(m,n): 

f(m,n) = f(m,m + ri) + f(m + n,n) 
= f(m,2m + n) + f(2m + n,W7 + n) 

+ /X777 + n9m + 2n) + /(w + 2n,n) 
The arguments of the function are generalized Stern numbers. The following 
conclusion can now be drawn concerning EisensteinTs function. 

1. For any given fikm + ln,krm + l'n)9 that (k + kr)m + (I + l')n = X. 

2. If m = 1 and n = 2, then (16) implies that /(l,2) can be composed 
of elements of the form fi^yX - «) and that 

/(l, 2) = X - * 4- X - <*' + X - cc" + . . . 

3. For whole numbers "P" such that — ~ — <_ r <_ X - 1, 

/(l. 2) E E ^ (mod X). 
r 

4. For whole numbers 'V such that, as in (18), 

n 0 X m0X 
— — < r < 

n ~~ ~ m 
then 

f(m,n) = Y.~ (mod *)• 
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1. The b inomia l i d e n t i t y which we wish to g e n e r a l i z e i s t h e f o l l o w i n g : 

- - .*, <n-k 
\ n - 1 / V ^ / I T. 4- 77 

fc-1 
u> <-s>- = i;(^1-1)(^)(^r-
It can be found and is proved in [2], Let us begin by giving a demonstration 
suitable to a generalization to more than two variables. Symbolizing Ctnf(t) 
for the coefficient an of tn in any power series f(t) = TJ antn, it is easily 
shown that the second number of (1) is: n>_o 
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Indeed, it is sufficient to carry out the Cauchy product of the two following 
power series (in t): 

^ x + y) f^Q\ n-1 J \x + z// 
To calculate (2) otherwise, let us apply the Lagrange reversion formula 

under the following form [1, I, p. 160 (8c)]: let fit) = /^ OLntn be a formal 
n >_0 

series a0 =0, ax ^ 0 , of which the reciprocal series is f^-'1'(t) [that is to 

say, fif^'^it)) = f^'^ifit)) = t], and let $(£) be any other formal series 

with derivative '$'(£); then we have: 

(3) nCtn 0(f<_1>(t)) = Ct,-i $'(*)(^-) " . 

In view of demonstrating (1), let us put in (3), 

x fit) = t - tz~^f--9 <Df(i) = „ * + -
J x + y l - tx i - ty9 

which guarantees that the second member of (3) is effectively (2) in this 
case. But then, 

$(£) = -log(l - tx) - log(l - ty) 

= -log{l - t(x + y) + t2xy} 
= -log{l - (ar + y)f(t)}9 

that is to say, thanks to the well-known expansion -log(l - T) = /^ Tn/n for 
(*): n>.i 

w^n$(/<" *>(*)) = nCtn - log{l - (a: + 2/)/(/<"1>(«)} 

= nCt» - log(l - (x + 2/)t) (=} (x + 2/)n ; 

Consequently, we have equality (1) as a result of (3). 

2. To generalize formula (1), let us call ol9 a2, a3, ... the elementary 
symmetric of the variables xl9 x2f> ,..9xm9 and Sl9 S2, S3, ... the symmetric 
functions which are sums of the powers; in other words, 

(4) Ox = J2 xi> °2 = ]C ̂ ^ , ^ 3 = ^ ^ ^ ^ 3 , . . . 
l< . i< .m l±ii<i2^m l<.ii<iz<H<_m 

(5) 5X (=ax) = £ *<, 5 2 = £ arj, 5 3 = £ x\, . . . . 
l<_i<.m l£t£m l<.i<.m 
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Let us apply the Lagrange formula (3), this time with 

f{t) . t . ^ + t s £ i . . . . + ( . i ri |- t. u i ° i ° i 

- -^-{I - (I - txja - tx2) ••• (i - txj), 

*(*) = - l o g ( l - oxf(t)) = - l og ( l - txx)(Y - tx2) ••• (1 - txj 

* ' < * ) 
-L ~ uOb -J JL ~~ uCC r\ x. ~~ Z^u ^ 

Now, the first member of (3) equals: 

(6) nCtn - log{l - o.fif^^it))} = nCtn - log(l - a^ ) = an
l9 

and the second member of (3) may be wr i t ten 

( 7 ) Ctn-1 $ ' ( * ) 
t 

\1 - ta^ " " 1 - txm)\ a2 ax " 7 

Let us introduce the simplified wri t ing for the multinomial coeff ic ients 

(n - 1 +Vi +v2 +• • • +v w - i ) ! 
( n - 1 , v l 5 v2 , . . . , v,_x) = ( n _ i ) ! V l ! v 2 ! . . . v ^ , 

in par t i cu la r , (a, 2? - a) = \ a / J s and in expanding (7) as a multiple sei 
of order (m - 1) , [ 1 , I , p . 53 (12w')] , there comes: 

(8) Ct»-r\Y, Sktk-M £ ( n - 1, V,, v 2 , . . . . 
(fc>Ll ) ( v 1 , v 2 , . . . , v m - 1 > . 0 

Finally, by comparing (3), (6), and (8), we find: 

TkdQtiQMi With the notations (4) and (5), we have the multinomial identity: 

(9) < = E k E ' (-DVl+V,;+V"(»-l, vz, 

V2, ...) ( £ r & r •••(£)""•' 
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For example, by m = 2, we find again formula (1) under the term 

For three variables, xl9 x2, x39 m = 3, we have (v = V2) : 
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This paper will prove that essentially only the obvious recurrences have 
almost all primes as divisors. An integer n is a divisor of a recurrence if 
n divides some term of the recurrence. In this paper, "almost all primes" 
will be taken interchangeably to mean either all but finitely many primes or 
all but for a set of Dirichlet density zero in the set of primes. In the 
context of this paper, the two concepts become synonymous due to the Froben-
ius density theorem. Our paper relies on a result of A. Schinzel [2], whose 
paper uses "almost all" in the same sense. 

Let {wn} be a recurrence defined by the recursion relation 

(1) wn+2 = awn+1 + bwn 

where a, b9 and the initial terms wQ9 w1 are all integers. We will call a 
and b the parameters of the recurrence. Associated with the recurrence (1) 
is its characteristic polynomial 

(2) x2 - ax - b = 0, 

with roots a and 3, where a 4- 3 = a and a3 = ~b. 
Let 

D = (a - 3)2 = a2 + kb 
be the discriminant of this polynomial. 

In general, if D ± 0, 

(3) wn = oxan + c23n
5 

where 


