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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F = F + F F = 0 F = 1 
and 

Ln + 2 = Ln + l + Ln> L0 = 2> Li = 1' 
Also a and b designate the roots (1 + /5)/2 and (1 - /5)/2, respectively, of 
x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-400 Proposed by Herta T„ Freitag, Roanoke, VA 

Let Tn be the nth triangular number n(n + l)/2. For which positive in-
tegers n is T\ + T\ + ••• + T2 an integral multiple of Tn? 

B-^01 Proposed by Gary L. Mullen, Pennsylvania State University, Sharon, PA 

Show that lim [(n!)2n/(n2)!] = 0. 
n-»-oo 

B-402 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Show that (L„Ln+3, 2Ln+1LM+2, 5̂ 2n + 3̂  -*-s a Pythagorean triple. 

B-403 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let m = 5n. Show that L2m = -2 (mod 5m2). 

B-404 Proposed by Phil Mana, Albuquerque, NM 

Let x be a positive irrational number. Let a, £>, c, and 6? be positive 
integers with alb < x < old. If alb < v < x, with r rational, implies that 
the denominator of r exceeds b, we call a/b a good lower approximation (GLA) 
for x. If x < v < c/d, with v rational, implies that the denominator of v 
exceeds d, old is a good upper approximation (GUA) for x. Find all the GLAs 
and all the GUAs for (1 + /5)/2. 

B-405 Proposed by Phil Mana, Albuquerque, NM 

Prove that for every positive irrational x, the GLAs and GUAs for x (as 
defined in B-404) can be put together to form one sequence {p /q } with 

p q - p q , = ±1 for all n. 

184 
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SOLUTIONS 

Complementary Primes 

B-376 Proposed by Frank Kocher and Gary L. Mullen, 
Pennsylvania State University, University Park and Sharon, PA 

Find all integers n >3 such that n -p is an odd prime for all odd primes 
p less than n. 

Solution by Paul S. Bruckman, Concord, CA 

Let n be a solution to the problem, and p any odd prime less than n. 
Since p and n -p are odd, clearly n must be even. Hence, n = 0, 2, 4 (mod 6). 
Since 4 - 3 = 6 - 5 = 8 - 7 = 1 and 1 is not a prime, it follows that n 4- 4, 
n ^ 6, n ^ 8. Hence, n >_ 10. 

If n = 0 (mod 6), then n - 3 = 3 (mod 6), which shows that n - 3 is com-
posite and >1 9. Likewise, if n = 2 (mod 6), then n - 5 = 3 (mod 6), which 
shows that n - 5 is composite and >. 9. Finally, if n = 4 (mod 6), then n - 1 
= 3 (mod 6), which is composite, unless n = 10, in which case n - 7 = 3, a 
prime. Hence, n = 10 is the only possible solution. Since 10 - 3 = 7, 10 -
5 = 5 , 10 - 7 = 3, which are all primes, n = 10 is indeed the only solution 
to the problem. 

Also solved by Heiko Harborth (W. Germany), Charles Joscelyne, Graham Lord, 
J. M. Metzger, Bob Prielipp, E. Schmutz & M. Wachtel (Switzerland) , Sahib 
Singh, Rolf Sonntag (W. Germany), Charles W. Trigg, Gregory Wulczyn, and the 
proposer. 

Counting Lattice Points 

B-377 Proposed by Paul S. Bruckman, Concord, CA 

For all real numbers a >_ 1 and b >_ 1, prove that 
[a] [b] 

£[2>/l - (k/a)2] = J^W1 ~ (k/M2J> 
where [#] is the greatest integer in x. 

Solution by J. M. Metzger, University of North Dakota, Grand Forks, ND 

Each sum counts the number of lattice points in the first quadrant of 
2 2 

— + — = 1 
a b 

the first along the vertical lines, x = 1, x = 2, . . . , a; = [a] , the second 
along the horizontal lines, z/ = 1, 2/ = 2, ...,£/=[&]. The two counts must 
agree. 

Also solved by Bob Prielipp, Sahib Singh, and the proposer. 

Congruence Mod 3 

B-378 Proposed by George Berzsenyi, Laram University, Beaumont, TX 

Prove that F3n+l + 4nFM+3 = 0 (mod 3) for n = 0, 1, 2, ... . 
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Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oskosh, WI 

We shall establish that F3n + l + Fn + 3 E 0 (mod 3) for n = 0, 1, 2, . .., 
which is equivalent to the stated result because 4" = 1 (mod 3) for each 
nonnegative integer n. Clearly the desired result holds when n = 0 and when 
n = 1. Assume that F3k+l + Fk + 3 E 0 (mod 3) and Fsk+k + Fk + h = 0 (mod 3) , 
where k is an arbitrary nonnegative integer. Then, by addition, 

F3k+i + ̂ afc+if + Fk + 5 E 0 (mod 3). 
But 

6F3k+2 + ^F3k+1 + F3k+h = F3k + 7 
SO 

F3k + 1 + ^3k+if E F3fc+7 ( m o d 3 ) . 
Hence 

F3k + 7 + *fc + 5' E ° (mod 3> 
and our proof is complete by mathematical induction. 

Also solved by Paul S. Bruckman, Herta T. Freitag, Graham Lordf Sahib Singh, 
Gregory Wulczyn, and the proposer. 

Congruence Mod 5 

B-379 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that F2n = ft(-l)n+1 (mod 5) for all nonnegative integers n. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, WI 

Clearly the desired result holds when n = 0 and when n - 1. Assume that 
F2k E k(-l)k+1 (mod 5) and F2k+2 = (fc + l)(-l)k+2 (mod 5), where k is an ar-
bitrary nonnegative integer. Then, since 

F2.k+h = 3F2k+2 - F2k, 

F2k + h E {3k + 3)(-l)k+2 - k(-l)k + l (mod 5) 

E (~-l)k + 2(bk + 3) (mod 5) 

E (k + 2)(-l)k+3 (mod 5). 

Our solution is now complete by mathematical induction. 

Also solved by Paul S. Bruckman, Charles Joscelyne, Graham Lord, Sahib Singh, 
Gregory Wulczyn, and the proposer. 

Binomial Convolution 

B-380 Proposed by Dan Zwillinger, Cambridge, MA 

Let a, by and o be nonnegative integers. Prove that 

E (k+a -l\(n -k+b -c\ (n+a+b - c \ 
\ a \ b \ a+b+1 ' 

fc-i 

Here ( '" 1 = 0 if m < P . 
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Solution by Phil Mana, Albuquerque, NM 

For every nonnegative integer d, the Maclaurin series for (1 - x)~d~l is 

± (-:">'• 
Then 

( i - a O ~ a - 1 ( i - x)-*-1 = ( i - x)'a-h-2, 

z: (':v- ±(Jt">'- -ti'iitii1)"-
i = 0 j - 0 n = 0 x 

Equat ing c o e f f i c i e n t s of xn~a~1 on bo th s i d e s , one has 

Y^ (k -1 +a\/n -c -k+b\ = In -o +a+b\ 
2-4 \ a ) \ b ) \ a+b+l ) 
k = l 

The upper limit n - c for the sum here can be replaced by n, since any terms 

for n - o < k <_ n will vanish using the convention that ( ) = 0 for m < r. 

This gives the desired result. 

Also solved by Paul S. Bruckman, Bob Prielipp & N. J. Kuenzl, A. G. Shannon, 
and the proposer. 

Generating Function 

B-381 Proposed by V. E. Hoggatt, Jr. , San Jose State University, San Jose, CA 

Let a2n = Fn+1 and &2n + 1 = F +1Fn+ . F i n d t he . r a t i o n a l f unc t i on t h a t 
h a s 

aQ + axx + a2x2 + a3x3 + 

as its Maclaurin series. 

Solution by Sahib Singh, Clarion State College, Clarion, PA 
n 

By the result 7 F} = F F ̂ ,, we get the Mclaurin series as: 
i = 1 

F\ + F\x(± + x2 + x1* + • • •) + F\X\ + F2X3(1 + oo2 + xh + •••) + 

\F\ + F\X2 + F2
3Xh + F\X* + • • •] . 

1 + x - x2 

1 - x 

/dn - bn \2 

Using Fn = ( h ) ' t*le a b ° v e becomes 
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(1+X 'f) ±—r [(a2 + a V + a6^ + •••) 
\ 1 - x2 I (a - b)2 L 

+ {b2 + bhx2 + & V + • • • ) - IdbiX + abx2 + a2b2x* + • • • ) ] 

= I1 + x ~ x2\ . 1 [" a2
 + fe2 lab 1 

V 1 - * 2 / {a - b)2\_l - a2x2 1 - b2x2 I - abx2J 

which simplifies to 

l l + x - x2\ I (1 - x2) \ = 1 + x - x2 

V 1 - x2 / \ (1 + x2) (1 - 3x2 + a?1*)/ (1 + x2) (1 - 3* 2 + xh) ' 

Also solved by Paul S. Bruckman, R. Garfield, John W. Vogel, and the proposer. 

ERRATA 

Tne &oZloiA)Zng ojvi.oh& hewn been notzd: 

Volume 16, No. 5 (October 1978), p. 407 [J. A. H. Hunter's "Congruent Primes 
of Form (8r+l)"]. The equations presented in the second line of the article 
should read 

X2 - el2 = Z2, and X2 + eY2 = W2. 

Volume 17, No. 1 (February 1979), p. 84 (A. P. Hillman & V. E. Hoggatt, Jr.'s 
"Nearly Linear Functions"). Equation (1) should read 

k k-1 
(1) C -H - C «H = J(c/ - c.)h. >_hk - Y*°ihi' 

i=l i=l 

The second line of the proof of Lemma 7 should read 

The hypothesis E *Ef = 0 implies . . . . 

In the proof of Theorem 1, Equation (10) should read 

(10) bd(jn) = 0%^-Hj - Cm_x -Hj. 

(Kindness of Margaret Owens) 


