$$
\begin{aligned}
& \quad\left(\frac{1+x-x^{2}}{1-x^{2}}\right) \cdot \frac{1}{(a-b)^{2}}\left[\left(a^{2}+a^{4} x^{2}+a^{6} x^{4}+\cdots\right)\right. \\
& \left.\quad+\left(b^{2}+b^{4} x^{2}+b^{6} x^{4}+\cdots\right)-2 a b\left(1+a b x^{2}+a^{2} b^{2} x^{4}+\cdots\right)\right] \\
& = \\
& \left(\frac{1+x-x^{2}}{1-x^{2}}\right) \cdot \frac{1}{(a-b)^{2}}\left[\frac{a^{2}}{1-a^{2} x^{2}}+\frac{b^{2}}{1-b^{2} x^{2}}-\frac{2 a b}{1-a b x^{2}}\right],
\end{aligned}
$$

which simplifies to

$$
\left(\frac{1+x-x^{2}}{1-x^{2}}\right)\left(\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-3 x^{2}+x^{4}\right)}\right)=\frac{1+x-x^{2}}{\left(1+x^{2}\right)\left(1-3 x^{2}+x^{4}\right)}
$$

Also solved by Paul S. Bruckman, R. Garfield, John W. Vogel, and the proposer.

ERRATA
The following errors have been noted:
Volume 16, No. 5 (October 1978), p. 407 [J.A.H. Hunter's 'Congruent Primes of Form $\left.(8 r+1)^{\prime \prime}\right]$. The equations presented in the second line of the article should read

$$
X^{2}-e Y^{2}=Z^{2}, \text { and } X^{2}+e Y^{2}=W^{2} .
$$

Volume 17, No. 1 (February 1979), p. 84 (A. P. Hillman \& V.E. Hoggatt, Jr.'s "Nearly Linear Functions"). Equation (1) should read

$$
\begin{equation*}
C^{\prime} \cdot H-C \cdot H=\sum_{i=1}^{k}\left(c_{i}^{\prime}-c_{i}\right) h_{i} \geq \hbar_{k}-\sum_{i=1}^{k-1} c_{i} h_{i} . \tag{1}
\end{equation*}
$$

The second line of the proof of Lemma 7 should read
The hypothesis $E \cdot E^{\prime}=0$ implies
In the proof of Theorem 1, Equation (10) should read

$$
\begin{equation*}
b_{j}(m)=C_{m-1}^{*} \cdot H_{j}-C_{m-1} \cdot H_{j} . \tag{10}
\end{equation*}
$$

(Kindness of Margaret Owens)

