ON PSEUDO-FIBONACCI NUMBERS OF THE FORM $2S^2$

- Krishnaswami Alladi & V. E. Hoggatt, Jr., "Compositions with Ones and Twos," The Fibonacci Quarterly 13, No. 3 (1975):233-239.
- 4. V. E. Hoggatt, Jr., & Marjorie Bicknell, "Palindromic Compositions," The Fibonacci Quarterly 13, No. 4 (1975):350-356.
- 5. V. E. Hoggatt, Jr., & Marjorie Bicknell, "Special Partitions," *The Fibonacci Quarterly* 13, No. 3 (1975):278 f.
- 6. V. E. Hoggatt, Jr., & D. A. Lind, "A Primer for the Fibonacci Numbers: Part VI," The Fibonacci Quarterly 5, No. 5 (1967):445-463.
- Douglas A. Fults, "Solution of a Certain Recurrence Relation" (unpublished paper written while a student at Saratoga High School, Saratoga, California).
- 8. Reuben C. Drake, Problem B-180, The Fibonacci Quarterly 8, No. 1 (1970): 106.
- 9. L. Carlitz, Solution to B-180, *The Fibonacci Quarterly* 8, No. 5 (1970): 547-548.
- V. E. Hoggatt, Jr., & Joseph Arkin, "A Bouquet of Convolutions," Proceedings of the Washington State University Conference on Number Theory, March 1971, pp. 68-79.
- 11. Verner E. Hoggatt, Jr., "Convolution Triangles for Generalized Fibonacci Numbers," *The Fibonacci Quarterly* 16, No. 2 (1970):158-171.
- 12. V. E. Hoggatt, Jr., Problem H-281, The Fibonacci Quarterly 16, No. 2 (1978):188.
- 13. Dorothy Denevan, "Reflections in Glass Plates and Other Counting Problems" (unpublished Master's thesis, San Jose State University, August 1977).
- Ronald Garibaldi, "Counting Problems and Properties of Hexagon Lattice Sequence" (unpublished Master's thesis, San Jose State University, May 1978).
- 15. R. J. Weinshenk, "Convolutions and Difference Equations Associated with N-Reflections of Light in Two Glass Plates" (unpublished Master's thesis, San Jose State University, June 1965).

ON PSEUDO-FIBONACCI NUMBERS OF THE FORM $2S^2$, where **s** is an integer

A. ESWARATHASAN

University of Sri Lanka, Jaffna, Sri Lanka

If the pseudo-Fibonacci numbers are defined by

(1)

$$u_1 = 1, u_2 = 4, u_{n+2} = u_{n+1} + u_n, n > 0,$$

then we can show that $u_1 = 1$, $u_2 = 4$, and $u_4 = 9$ are the only square pseudo-Fibonacci numbers.

In this paper we will describe a method to show that none of the pseudo-Fibonacci numbers are of the form $2S^2$, where S is an integer.

Even if we remove the restriction n > 0, we do not obtain any number of the form $2S^2$, where S is an integer.

It can be easily shown that the general solution of the difference equation (1) is given by $\label{eq:constraint}$

(2)
$$u_n = \frac{7}{5 \cdot 2^n} (\alpha^n + \beta^n) - \frac{1}{5 \cdot 2^{n-1}} (\alpha^{n-1} + \beta^{n-1}),$$

142

where

Let

$$\alpha$$
 = 1 + $\sqrt{5}$, β = 1 - $\sqrt{5}$, and *n* is an integer.

$$\eta_r = \frac{\alpha^r + \beta^r}{2^r}; \quad \xi_r = \frac{\alpha^r - \beta^r}{2^r \sqrt{5}}$$

Then we easily obtain the following relations:

(3)
$$u_{n} = \frac{1}{5}(7\eta_{n} - \eta_{n-1}),$$
(4)
$$\eta_{r} = \eta_{r-1} + \eta_{r-2}, \eta_{1} = 1, \eta_{2} = 3$$
(5)
$$\xi_{r} = \xi_{r-1} + \xi_{r-2}, \xi_{1} = 1, \xi_{2} = 1$$
(6)
$$\eta_{r}^{2} - 5\xi_{r}^{2} = (-1)^{r} 4,$$
(7)
$$\eta_{2r} = \eta_{r}^{2} + (-1)^{r+1} 2,$$
(8)
$$2\eta_{m+n} = 5\xi_{m}\xi_{n} + \eta_{m}\eta_{n},$$
(9)
$$2\xi_{m+n} = \eta_{n}\xi_{m} + \eta_{n}\xi_{m},$$
(10)
$$\xi_{2r} = \eta_{r}\xi_{r}$$
The following congruences hold:
(11)
$$u_{n+2r} \equiv (-1)^{r+1}u_{n} \pmod{\eta_{r}2^{-s}},$$
(12)
$$u_{n+2r} \equiv (-1)^{r}u_{n} \pmod{\xi_{r}2^{-s}},$$

where S = 0 or 1.

We also have the following table of values:

п	0	1	2	3	4	5	6	7	8	9	12	14	16
u _n	3	1	4	5	9	14	23	37	60	97	411	1076	2817
t	4	5	8	10	1	t		5					
ξ _t	3	5	3•7	5•11	-	η _t		11					
et													

Let

(13) $2x^2 = u_n$, where x is an integer.

The proof is now accomplished in eighteen stages.

(a) (13) is impossible if $n \equiv 0 \pmod{16}$, for, using (12) we find that

$$u_n \equiv u_0 \pmod{\xi_8}$$

$$\equiv 3 \pmod{7}, \text{ since } 7/\xi_8$$

$$\equiv 10 \pmod{7}.$$

Thus, we find that

 $\frac{u_n}{2} \equiv 5 \pmod{7}$, since (2,7) = 1,

and since
$$\left(\frac{5}{7}\right) = -1$$
, (13) is impossible.

(b) (13) is impossible if $n \equiv 1 \pmod{8}$, for, using (12) in this case

 $u_n \equiv u_1 \pmod{\xi_4}$ $\equiv 1 \pmod{3}$ $\equiv 4 \pmod{3}.$

Thus,

 $\frac{u_n}{2} \equiv 2 \pmod{3}, \text{ since } (2,3) = 1,$ and since $\left(\frac{2}{3}\right) = -1$, (13) is impossible.

(c) (13) is impossible if $n \equiv 2 \pmod{8}$, for, using (12) we find that

 $u_n \equiv u_2 \pmod{\xi_4}$ $\equiv 4 \pmod{3}.$

Thus, we find that

 $\frac{u_n}{2} \equiv 2 \pmod{3}, \text{ since } (2,3) = 1,$ and since $\left(\frac{2}{3}\right) = -1$, (13) is impossible.

(d) (13) is impossible if $n \equiv 3 \pmod{16}$, for, using (12) in this case

 $\begin{array}{rcl} u_n \equiv u_3 \pmod{\xi_8} \\ \equiv & 5 \pmod{7}, \text{ since } 7/\xi_8 \\ \equiv & 12 \pmod{7}. \end{array}$

Thus,

 $\frac{u_n}{2} \equiv 6 \pmod{7}, \text{ since } (2,7) = 1,$ and since $\left(\frac{6}{7}\right) = -1$, (13) is impossible.

(e) (13) is impossible if $n \equiv 4 \pmod{10}$, for, using (12) we find that

 $u_n \equiv \pm u_{\downarrow} \pmod{\xi_5}$ $\equiv \pm 9 \pmod{5}$ $\equiv \pm 4 \pmod{5}.$

Thus, we find that

 $\frac{u_n}{2} \equiv \pm 2 \pmod{5}$, since (2,5) = 1,

and since $\left(\frac{-2}{5}\right) = \left(\frac{2}{5}\right) = -1$, (13) is impossible.

(f) (13) is impossible if $n \equiv 5 \pmod{10}$, for, using (12) in this case

$$u_n \equiv \pm u_5 \pmod{\xi_5}$$
$$\equiv \pm 14 \pmod{5}.$$

Thus,

 $\frac{u_n}{2} \equiv \pm 7 \pmod{5}$, since (2,5) = 1,

ON PSEUDO-FIBONACCI NUMBERS OF THE FORM $2S^2$

and since $\left(\frac{-7}{5}\right) = \left(\frac{7}{5}\right) = -1$, (13) is impossible.

(13) is impossible if $n \equiv 6 \pmod{20}$, for, using (12) we find that (g) $\begin{array}{rl} u_n \equiv u_6 \pmod{\xi_{10}} \\ \equiv 23 \pmod{11}, \text{ since } 11/\xi_{10} \\ \equiv 12 \pmod{11}. \end{array}$

Thus, we find that

 $\frac{u_n}{2} \equiv 6 \pmod{11}$, since (2,11) = 1,

and since $\left(\frac{6}{11}\right) = -1$, (13) is impossible.

(13) is impossible if $n \equiv 7 \pmod{8}$, for, using (12) in this case (h)

> $u_n \equiv u_7 \pmod{\xi_4} \\ \equiv 37 \pmod{3}$ \equiv 34 (mod 3).

Thus,

 $\frac{u_n}{2} \equiv 17 \pmod{3}$, since (2,3) = 1,

and since $\left(\frac{17}{3}\right) = -1$, (13) is impossible.

(13) is impossible if $n \equiv 8 \pmod{10}$, for, using (11) we find that (i)

 $\begin{array}{rrr} u_n \equiv u_8 \pmod{\eta_5} \\ \equiv 60 \pmod{11}. \end{array}$

Thus, we find that

 $\frac{u_n}{2} \equiv 30 \pmod{11}$, since (2,11) = 1,

and since $\left(\frac{30}{11}\right)$ = -1, (13) is impossible.

(13) is impossible if $n \equiv 1 \pmod{10}$, for, using (12) in this case (j)

> $u_n \equiv \pm u_1 \pmod{\xi_5} \\ \pm 1 \pmod{5}$ ±4 (mod 5).

Thus,

 $\frac{u_n}{2} \equiv \pm 2 \pmod{5}$, since (2,5) = 1, and since $\left(\frac{-2}{5}\right) = \left(\frac{2}{5}\right) = -1$, (13) is impossible.

(13) is impossible if $n \equiv 12 \pmod{16}$, for, using (12) we find that (k)

> $u_{12} \pmod{\xi_8}$ 411 (mod 7), since $7/\xi_8$ 404 (mod 7).

Thus,

 \mathcal{U}_n

 $\frac{u_n}{2} \equiv 202 \pmod{7}$, since (2,7) = 1,

and since
$$\left(\frac{202}{7}\right)$$
 = -1, (13) is impossible.

(1) (13) is impossible if $n \equiv 3 \pmod{10}$, for, using (11) in this case

 $\begin{array}{rcl} u_n &\equiv u_3 \pmod{\eta_5} \\ &\equiv & 5 \pmod{11} \\ &\equiv & 16 \pmod{11}. \end{array}$

Thus,

 $\frac{u_n}{2} \equiv 8 \pmod{11}, \text{ since } (2,11) = 1,$ and since $\left(\frac{8}{11}\right) = -1$, (13) is impossible.

(m) (13) is impossible if $n \equiv 14 \pmod{16}$, for, using (12) we find that

 $u_n \equiv u_{14} \pmod{\xi_8} \equiv 1076 \pmod{7}$, since $7/\xi_8$.

Thus,

 $\frac{u_n}{2} \equiv 538 \pmod{7}, \text{ since } (2,7) = 1,$ and since $\left(\frac{538}{7}\right) = -1$, (13) is impossible.

(n) (13) is impossible if $n \equiv 0 \pmod{10}$, for, using (11) in this case

$$u_n \equiv u_0 \pmod{\eta_5}$$

$$\equiv 3 \pmod{11}$$

$$\equiv 14 \pmod{11}.$$

Thus, we find that

 $\frac{u_n}{2} \equiv 7 \pmod{11}, \text{ since } (2,11) = 1,$ and since $\left(\frac{7}{11}\right) = -1$, (13) is impossible.

(o) (13) is impossible if $n \equiv 16 \pmod{20}$, for, using (12) we find that

 $\begin{array}{ll} u_n \equiv u_{16} \pmod{\xi_{10}} \\ \equiv 2817 \pmod{11}, \text{ since } 11/\xi_{10} \\ \equiv 2806 \pmod{11}. \end{array}$

Thus,

 $\frac{u_n}{2} \equiv 1403 \pmod{11}, \text{ since } (2,11) = 1,$ and since $\left(\frac{1403}{11}\right) = -1$, (13) is impossible.

(p) (13) is impossible if $n \equiv 2 \pmod{10}$, for, using (11) in this case

$$u_n \equiv \pm u_2 \pmod{\xi_5}$$
$$\equiv \pm 4 \pmod{5}.$$

Thus, we find that

 $\frac{u_n}{2} \equiv 2 \pmod{5}$, since (2,5) = 1,

and since
$$\left(\frac{-2}{5}\right) = \left(\frac{2}{5}\right) = -1$$
, (13) is impossible.

(q) (13) is impossible if $n \equiv 7 \pmod{10}$, for, using (11) in this case $u_n \equiv u_7 \pmod{\eta_5}$ $\equiv 37 \pmod{11}$ $\equiv 26 \pmod{11}.$

Thus,

 $\frac{u_n}{2} \equiv 13 \pmod{11}, \text{ since } (2,11) = 1,$ and since $\left(\frac{13}{11}\right) = -1$, (13) is impossible.

(r) (13) is impossible if $n \equiv 9 \pmod{10}$, for, using (11) we find that

\mathcal{U}_n	Ξ	Ug	(mod	η ₅)
	Ш	97	(mod	11)
	Ξ	86	(mod	11).

Thus, we find that

$$\frac{u_n}{2} \equiv 43 \pmod{11}, \text{ since } (2,11) = 1,$$

and since $\binom{43}{11} = -1$, (13) is impossible.

Hence, none of the pseudo-Fibonacci numbers are of the form $2S^2$, where S is an integer.

REFERENCE

A. Eswarathasan, "On Square Pseudo-Fibonacci Numbers," *The Fibonacci Quarterly* 16, No. 4 (1978):310-314.

INFINITE SERIES WITH FIBONACCI AND LUCAS POLYNOMIALS

GERALD E. BERGUM

South Dakota State University, Brookings, SD 57006

and

VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95192

In [7], D. A. Millin poses the problem of showing that

(1)
$$\sum_{n=0}^{\infty} F_{2^n}^{-1} = \frac{7 - \sqrt{5}}{2}$$

where F_k is the *k*th Fibonacci number. A proof of (1) by I. J. Good is given in [5], while in [3], Hoggatt and Bicknell demonstrate ten different methods of finding the same sum. Furthermore, the result of (1) is extended by Hoggatt and Bicknell in [4], where they show that