3. Krishnaswami Alladi \& V. E. Hoggatt, Jr., "Compositions with Ones and Twos," The Fibonacci Quarterly 13, No. 3 (1975):233-239.
4. V. E. Hoggatt, Jr., \& Marjorie Bicknell, "Palindromic Compositions," The Fibonacci Quarterly 13, No. 4 (1975):350-356.
5. V. E. Hoggatt, Jr., \& Marjorie Bicknell, "Special Partitions," The Fibonacei Quarterly 13, No. 3 (1975):278 f.
6. V. E. Hoggatt, Jr., \& D. A. Lind, "A Primer for the Fibonacci Numbers: Part VI," The Fibonacci Quarterly 5, No. 5 (1967):445-463.
7. Douglas A. Fults, "Solution of a Certain Recurrence Relation" (unpublished paper written while a student at Saratoga High School, Saratoga, California).
8. Reuben C. Drake, Problem B-180, The Fibonacci Quarterly 8, No. 1 (1970): 106.
9. L. Carlitz, Solution to B-180, The Fibonacci Quarterly 8, No. 5 (1970): 547-548.
10. V. E. Hoggatt, Jr., \& Joseph Arkin, "A Bouquet of Convolutions," Proceedings of the Washington State University Conference on Number Theory, March 1971, pp. 68-79.
11. Verner E. Hoggatt, Jr., "Convolution Triangles for Generalized Fibonacci Numbers," The Fibonacci Quarterly 16, No. 2 (1970):158-171.
12. V. E. Hoggatt, Jr., Problem H-281, The Fibonacei Quarterly 16, No. 2 (1978):188.
13. Dorothy Denevan, "Reflections in Glass Plates and Other Counting Problems" (unpublished Master's thesis, San Jose State University, August 1977).
14. Ronald Garibaldi, "Counting Problems and Properties of Hexagon Lattice Sequence" (unpublished Master's thesis, San Jose State University, May 1978).
15. R.J. Weinshenk, "Convolutions and Difference Equations Associated with N-Reflections of Light in Two Glass Plates" (unpublished Master's thesis, San Jose State University, June 1965).

ON PSEUDO-FIBONACCI NUMBERS OF THE FORM $\mathbf{2} \boldsymbol{S}^{2}$, WHERE S IS AN INTEGER

A. ESWARATHASAN

University of Sri Lanka, Jaffna, Sri Lanka
If the pseudo-Fibonacci numbers are defined by

$$
\begin{equation*}
u_{1}=1, u_{2}=4, u_{n+2}=u_{n+1}+u_{n}, n>0, \tag{1}
\end{equation*}
$$

then we can show that $u_{1}=1, u_{2}=4$, and $u_{4}=9$ are the only square pseudoFibonacci numbers.

In this paper we will describe a method to show that none of the pseudoFibonacci numbers are of the form $2 S^{2}$, where S is an integer.

Even if we remove the restriction $n>0$, we do not obtain any number of the form $2 S^{2}$, where S is an integer.

It can be easily shown that the general solution of the difference equation (1) is given by

$$
\begin{equation*}
u_{n}=\frac{7}{5.2^{n}}\left(\alpha^{n}+\beta^{n}\right)-\frac{1}{5.2^{n-1}}\left(\alpha^{n-1}+\beta^{n-1}\right) \tag{2}
\end{equation*}
$$

where

$$
\alpha=1+\sqrt{5}, \beta=1-\sqrt{5}, \text { and } n \text { is an integer. }
$$

Let

$$
\eta_{r}=\frac{\alpha^{r}+\beta^{r}}{2^{r}} ; \quad \xi_{p}=\frac{\alpha^{r}-\beta^{r}}{2^{r} \sqrt{5}}
$$

Then we easily obtain the following relations:

$$
\begin{align*}
& u_{n}=\frac{1}{5}\left(7 \eta_{n}-\eta_{n-1}\right) \tag{3}\\
& \eta_{r}=\eta_{r-1}+\eta_{r-2}, \eta_{1}=1, \eta_{2}=3 \tag{4}\\
& \xi_{r}=\xi_{r-1}+\xi_{r-2}, \quad \xi_{1}=1, \quad \xi_{2}=1 \tag{5}
\end{align*}
$$

(6) $\eta_{r}^{2}-5 \xi_{r}^{2}=(-1)^{r} 4$,) $\eta_{2 r}=\eta_{r}^{2}+(-1)^{r+1} 2$,

$$
\begin{equation*}
2 \eta_{m+n}=5 \xi_{m} \xi_{n}+\eta_{m} \eta_{n} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
2 \xi_{m+n}=\eta_{n} \xi_{m}+\eta_{n} \xi_{m} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\xi_{2 r}=\eta_{r} \xi_{r} \tag{9}
\end{equation*}
$$

The following congruences hold:

$$
\begin{array}{ll}
u_{n+2 r} \equiv(-1)^{r+1} u_{n} & \left(\bmod \eta_{r} 2^{-s}\right) \\
u_{n+2 r} \equiv(-1)^{r} u_{n} & \left(\bmod \xi_{r} 2^{-s}\right) \tag{12}
\end{array}
$$

where $S=0$ or 1 .
We also have the following table of values:

n	0	1	2	3	4	5	6	7	8	9	12	14	16
u_{n}	3	1	4	5	9	14	23	37	60	97	411	1076	2817
t	4	5	8	10	,	t		5					
ξ_{t}	3	5	$3 \cdot 7$	$5 \cdot 11$,	η_{t}		11					
Let													
(13)			x^{2}	u_{n}, whe	-	is	in	ge					

The proof is now accomplished in eighteen stages.
(a) (13) is impossible if $n \equiv 0(\bmod 16)$, for, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{0}\left(\bmod \xi_{8}\right) \\
& \equiv 3(\bmod 7), \text { since } 7 / \xi_{8} \\
& \equiv 10(\bmod 7) .
\end{aligned}
$$

Thus, we find that

$$
\frac{u_{n}}{2} \equiv 5(\bmod 7), \text { since }(2,7)=1
$$

and since $\left(\frac{5}{7}\right)=-1$, (13) is impossible.
(b) (13) is impossible if $n \equiv 1(\bmod 8)$, for, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{1}\left(\bmod \xi_{4}\right) \\
& \equiv 1(\bmod 3) \\
& \equiv 4(\bmod 3) .
\end{aligned}
$$

Thus,

$$
\begin{gathered}
\quad \frac{u_{n}}{2} \equiv 2(\bmod 3), \text { since }(2,3)=1 \\
\text { and since }\left(\frac{2}{3}\right)=-1,(13) \text { is impossible. }
\end{gathered}
$$

(c) (13) is impossible if $n \equiv 2(\bmod 8)$, for, using (12) we find that $u_{n} \equiv u_{2}\left(\bmod \xi_{4}\right)$

Thus, we find that
$\frac{u_{n}}{2} \equiv 2(\bmod 3)$, since $(2,3)=1$,
and since $\left(\frac{2}{3}\right)=-1$, (13) is impossible.
(d) (13) is impossible if $n \equiv 3(\bmod 16)$, for, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{3}\left(\bmod \xi_{8}\right) \\
& \equiv 5(\bmod 7), \text { since } 7 / \xi_{8} \\
& \equiv 12(\bmod 7) .
\end{aligned}
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 6(\bmod 7), \text { since }(2,7)=1
$$

and since $\left(\frac{6}{7}\right)=-1$, (13) is impossible.
(e) (13) is impossible if $n \equiv 4(\bmod 10)$, for, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv \pm u_{4}\left(\bmod \xi_{5}\right) \\
& \equiv \pm 9(\bmod 5) \\
& \equiv \pm 4(\bmod 5) .
\end{aligned}
$$

Thus, we find that

$$
\frac{u_{n}}{2} \equiv \pm 2(\bmod 5), \text { since }(2,5)=1
$$

$$
\text { and since }\left(\frac{-2}{5}\right)=\left(\frac{2}{5}\right)=-1, \text { (13) is impossible. }
$$

(f) (13) is impossible if $n \equiv 5(\bmod 10)$, for, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{5}\left(\bmod \xi_{5}\right) \\
& \equiv \pm 14(\bmod 5) .
\end{aligned}
$$

Thus,

$$
\frac{u_{n}}{2} \equiv \pm 7(\bmod 5), \text { since }(2,5)=1
$$

and since $\left(\frac{-7}{5}\right)=\left(\frac{7}{5}\right)=-1$, (13) is impossible.
(g) (13) is impossible if $n \equiv 6(\bmod 20)$, for, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{6}\left(\bmod \xi_{10}\right) \\
& \equiv 23(\bmod 11), \text { since } 11 / \xi_{10} \\
& \equiv 12(\bmod 11) .
\end{aligned}
$$

Thus, we find that

$$
\frac{u_{n}}{2} \equiv 6(\bmod 11), \text { since }(2,11)=1
$$

and since $\left(\frac{6}{11}\right)=-1$, (13) is impossible.
(h) (13) is impossible if $n \equiv 7(\bmod 8)$, for, using (12) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{7}\left(\bmod \xi_{4}\right) \\
& \equiv 37(\bmod 3) \\
& \equiv 34(\bmod 3)
\end{aligned}
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 17(\bmod 3), \text { since }(2,3)=1
$$

and since $\left(\frac{17}{3}\right)=-1$, (13) is impossible.
(i) (13) is impossible if $n \equiv 8(\bmod 10)$, for, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{8}\left(\bmod \eta_{5}\right) \\
& \equiv 60(\bmod 11) .
\end{aligned}
$$

Thus, we find that

$$
\frac{u_{n}}{2} \equiv 30(\bmod 11), \text { since }(2,11)=1
$$

and since $\left(\frac{30}{11}\right)=-1$, (13) is impossible.
(j) (13) is impossible if $n \equiv 1(\bmod 10)$, for, using (12) in this case

$$
\begin{aligned}
u_{n} \equiv & \pm u_{1}\left(\bmod \xi_{5}\right) \\
& \pm 1(\bmod 5) \\
& \pm 4(\bmod 5) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \quad \frac{u_{n}}{2} \equiv \pm 2(\bmod 5) \text {, since }(2,5)=1 \\
& \text { and since }\left(\frac{-2}{5}\right)=\left(\frac{2}{5}\right)=-1,(13) \text { is impossible. }
\end{aligned}
$$

(k) (13) is impossible if $n \equiv 12(\bmod 16)$, for, using (12) we find that $u_{n} \quad u_{12}\left(\bmod \xi_{8}\right)$
$411(\bmod 7)$, since $7 / \xi_{8}$ $404(\bmod 7)$.
Thus,

$$
\frac{u_{n}}{2} \equiv 202(\bmod 7), \text { since }(2,7)=1
$$

and since $\left(\frac{202}{7}\right)=-1$, (13) is impossible.
(1) (13) is impossible if $n \equiv 3(\bmod 10)$, for, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{3}\left(\bmod \eta_{5}\right) \\
& \equiv 5(\bmod 11)
\end{aligned}
$$

$\equiv 16(\bmod 11)$.
Thus,

$$
\frac{u_{n}}{2} \equiv 8(\bmod 11), \text { since }(2,11)=1,
$$

and since $\left(\frac{8}{11}\right)=-1$, (13) is impossible.
(m) (13) is impossible if $n \equiv 14(\bmod 16)$, for, using (12) we find that $u_{n} \equiv u_{14}\left(\bmod \xi_{8}\right)$

$$
\equiv 1076(\bmod 7), \text { since } 7 / \xi_{8}
$$

Thus,
$\frac{u_{n}}{2} \equiv 538(\bmod 7)$, since $(2,7)=1$,
and since $\left(\frac{538}{7}\right)=-1$, (13) is impossible.
(n) (13) is impossible if $n \equiv 0(\bmod 10)$, for, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{0}\left(\bmod \eta_{5}\right) \\
& \equiv 3(\bmod 1.1) \\
& \equiv 14(\bmod 11) .
\end{aligned}
$$

Thus, we find that

$$
\begin{aligned}
& \qquad \frac{u_{n}}{2} \equiv 7(\bmod 11), \text { since }(2,11)=1 \\
& \text { and since }\left(\frac{7}{11}\right)=-1,(13) \text { is impossible. }
\end{aligned}
$$

(o) (13) is impossible if $n \equiv 16(\bmod 20)$, for, using (12) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{16}\left(\bmod \xi_{10}\right) \\
& \equiv 2817(\bmod 11), \text { since } 11 / \xi_{10}
\end{aligned}
$$

$$
\equiv 2806(\bmod 11)
$$

Thus,

$$
\begin{aligned}
& \quad \frac{u_{n}}{2} \equiv 1403(\bmod 11), \text { since }(2,11)=1 \\
& \text { and since }\left(\frac{1403}{11}\right)=-1,(13) \text { is impossible. }
\end{aligned}
$$

(p) (13) is impossible if $n \equiv 2(\bmod 10)$, for, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv \pm u_{2}\left(\bmod \xi_{5}\right) \\
& \equiv \pm 4(\bmod 5) .
\end{aligned}
$$

Thus, we find that

$$
\frac{u_{n}}{2} \equiv 2(\bmod 5), \text { since }(2,5)=1,
$$

$$
\text { and since }\left(\frac{-2}{5}\right)=\left(\frac{2}{5}\right)=-1, \text { (13) is impossible. }
$$

(q) (13) is impossible if $n \equiv 7(\bmod 10)$, for, using (11) in this case

$$
\begin{aligned}
u_{n} & \equiv u_{7}\left(\bmod n_{5}\right) \\
& \equiv 37(\bmod 11) \\
& \equiv 26(\bmod 11) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \quad \frac{u_{n}}{2} \equiv 13(\bmod 11), \text { since }(2,11)=1 \\
& \text { and since }\left(\frac{13}{11}\right)=-1, \quad(13) \text { is impossible. }
\end{aligned}
$$

(r) (13) is impossible if $n \equiv 9(\bmod 10)$, for, using (11) we find that

$$
\begin{aligned}
u_{n} & \equiv u_{9}\left(\bmod n_{5}\right) \\
& \equiv 97(\bmod 11) \\
& \equiv 86(\bmod 11) .
\end{aligned}
$$

Thus, we find that

$$
\begin{aligned}
& \quad \frac{u_{n}}{2} \equiv 43(\bmod 11), \text { since }(2,11)=1 \\
& \text { and since }\left(\frac{43}{11}\right)=-1,(13) \text { is impossible. }
\end{aligned}
$$

Hence, none of the pseudo-Fibonacci numbers are of the form $2 S^{2}$, where S is an integer.

REFERENCE

A. Eswarathasan, "On Square Pseudo-Fibonacci Numbers," The Fibonacci Quarterly 16, No. 4 (1978):310-314.

infinite series With fibonacci and lucas polynomials

GERALD E. BERGUM
South Dakota State University, Brookings, SD 57006
and
VERNER E. HOGGATT, JR.
San Jose State University, San Jose, CA 95192
In [7], D. A. Millin poses the problem of showing that

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{2^{n}}^{-1}=\frac{7-\sqrt{5}}{2} \tag{1}
\end{equation*}
$$

where F_{k} is the k th Fibonacci number. A proof of (1) by I. J. Good is given in [5], while in [3], Hoggatt and Bicknell demonstrate ten different methods of finding the same sum. Furthermore, the result of (1) is extended by Hoggatt and Bicknell in [4], where they show that

