MAXIMUM CARDINALITIES FOR TOPOLOGIES ON FINITE SETS

JAMES E. JOSEPH
Howard University, Washington, D.C. 20059
If [n] represents the first n natural numbers, D. Stephen showed in [3] that no topology on $[n$] with the exception of the discrete topology has more than $3\left(2^{n-2}\right)$ elements and that this number is a maximum. In this article we show that, if k is a nonnegative integer and $k \leq n$, then no topology on [n] with precisely $n-k$ open singletons has more than $\left(1+2^{k}\right) 2^{n-k-1}$ elements and that this number is attainable over such topologies for $k<n$. We also show that the topology on $[n]$ with no open singletons and the maximum number of elements has cardinality $1+2_{n-2}$.

Recently, A. R. Mitchell and R. W. Mitchell have given a much simpler proof of Stephen's result [2]. Their proof consists of showing (1) If $n \geq 2$ and $x, y \varepsilon[n]$ with $x \neq y$, then

$$
\Gamma(x, y)=\{A \subset[n]: x \in A \text { or } y \notin A\}
$$

is a topology on [n] with precisely $3\left(2^{n-2}\right.$) elements, and (2) If Γ is a nondiscrete topology on [n], there exist $x, y \varepsilon[n]$ with $\Gamma \subset \Gamma(x, y)$. In Section 1 , we give proofs of two theorems which in conjunction produce Stephen's result and which dictate what form the nondiscrete topology of maximum cardinality must have.

1. STEPHEN'S RESULT

We let $|A|$ denote the cardinality of a set A. If Γ is a topology on [n] and $x \in$ [n], we let $M(\Gamma, x)$ be the open set about x with minimum cardinality. Evidently, $\Gamma=\{A \subset[n]: M(\Gamma, x) \subset A$ whenever $x \varepsilon A\}$.

Theorem 1.1: If k is a positive integer and Γ is a topology on [n] with precisely $n-k$ open singletons, there is a topology Δ on [n] with precisely $n-k+1$ open singletons and $|\Gamma|<|\Delta|$.
Proof: Choose $x \in[n]$ such that $\{x\}$ is not open. Let

$$
\Delta=\{A \cup(B \cap\{x\}): A, B \in \Gamma\} .
$$

Then Δ is a topology on $[n]$ with precisely $n-k+1$ open singletons, which satisfies $\Gamma \subset \Delta$ and $\Gamma \neq \Delta$. The proof is complete.
Theorem 1.2: If k is a positive integer and Γ is a topology on [n] with precisely $n-k$ open singletons and for some $x \in[n],\{y\}$ is open for each

$$
y \in M(\Gamma, x)-\{x\} \text { and }|M(\Gamma, x)|>2,
$$

there is a topology Γ on $[n]$ with precisely $n-k$ open singletons satisfying $|\Gamma|<|\Delta|$.
Proof: Choose $y \in M(\Gamma, x)-\{x\}$ and let

$$
\Delta=\{A \cup(B \cap(M(\Gamma, x)-\{y\})): A, B \in \Gamma\} .
$$

Then Δ is a topology on [n] with precisely $n-k$ open singletons, which satisfies $\Gamma \subset \Delta$ and $\Gamma \neq \Delta$. The proof is complete.
Corollary 1.3: Each nondiscrete topology on $\left[n\right.$] has at most $3\left(2^{n-2}\right)$ elements and this number is a maximum.

Proof: If Γ is a nondiscrete topology on $[n$], then $n \geq 2$. From Theorem 1.1, if Γ has the maximum cardinality over all nondiscrete topologies on $[n]$, then Γ has precisely $n-1$ open singletons; and by Theorem 1.2 , if $\{n\}$ is the nonopen singleton, we must have $|M(\Gamma, n)|=2$. So there is an $x \varepsilon[n-1]$ with $M(\Gamma, n)=\{n, x\}$. Thus,

$$
\Gamma=\{A \subset[n]: n \notin A\} \cup\{A \subset[n]:\{n, x\} \subset A\}
$$

Consequently, $|\Gamma|=2^{n-1}+2^{n-2}=3\left(2^{n-2}\right)$ and the proof is complete.
Remark 1.4: The topology Δ in the proof of Theorem 1.1 (1.2) is known as the simple extension of Γ through the subset $\{x\}(M(\Gamma, x)-\{y\})$ [1].

2. SOME PRELIMINARIES

In this section we present some notation and prove a theorem which will be useful in reaching our main results. If $k \varepsilon[n]$, let $\lambda(k)$ be the collection of topologies on $[n]$ which have $\{1\},\{2\}, \ldots,\{k\}$ as the nonopen singletons. If $1 \leq m \leq k$, 1et $C(m)$ be the set of increasing functions from [m] to [k]; for each $g \varepsilon C(m)$, let
and

$$
\begin{aligned}
& U(\Gamma, m, g)=\bigcup_{i \in[m]} M(\Gamma, g(i)) \\
& \Omega(\Gamma, m, g)=\{A \subset[n]: U(\Gamma, m, g) \subset A \quad \text { and }|A \cap[k]|=m\}
\end{aligned}
$$

Lemma 2.1: The following statements hold for each topology $\Gamma \varepsilon \lambda(k)$.
(a) $\Gamma=\{A \subset[n]: A \cap[k]=\emptyset\} \cup \bigcup_{m=1}^{k} \underset{g \varepsilon C(m)}{U} \Omega(\Gamma, m, g)$.
(b) For each $m \varepsilon[k]$ and $g \varepsilon C(m)$, we have

$$
|\Omega(\Gamma, m, g)|=0 \quad \text { or } \quad|\Omega(\Gamma, m, g)|=2^{n-k+m-|U(\Gamma, m, g)|}
$$

(c) $(\Gamma, m, g) \cap \Omega(\Gamma, j, h)=\emptyset$ un1ess $(m, g)=(j, h)$.

Proof of (a): Let Δ represent the set on the right-hand side of the equality sign in (a), and let $W \in \Gamma$. If $W \cap[k]=\emptyset$, then $W \varepsilon \Delta$. If $W \cap[k] \neq \emptyset$, then $|W \cap[k]|=m$ for some $m \varepsilon[k]$. Let g be the strictly increasing function from $[m]$ to $W \cap[k]$. For each $g(i)$ we have $W \supset M(\Gamma, g(i))$, so

$$
W \supset U(\Gamma, m, g), \quad W \in \Omega(\Gamma, m, g), \text { and } \Gamma \subset \Delta .
$$

If $W \varepsilon \Delta$ and $W \cap[k]=\emptyset$, then $W \varepsilon \Gamma$. Otherwise, $W \varepsilon \Omega(\Gamma, m, g)$ for some $m \varepsilon[k]$ and $g \in C(m)$. For this (m, g) we have

$$
g([m]) \subset U(\Gamma, m, g) \subset W ;
$$

thus, $W \in \Gamma$, since

$$
W=U(\Gamma, m, g) \cup(W-U(\Gamma, m, g)), \quad U(\Gamma, m, g) \varepsilon \Gamma,
$$

and .

$$
(W-U(\Gamma, m, g)) \cap[k]=\emptyset
$$

so $\Delta \subset \Gamma$ and (a) is verified.
Proof of (b): It is easy to verify that $\Omega(\Gamma, m, g)$ is the set of all subsets of $[n]-([k]-g([m]))$ which contain $U(\Gamma, m, g)$ for each pair (m, g). Consequently (b) holds.

Proof of (c): If $A \in \Omega(\Gamma, m, g) \cap \Omega(\Gamma, j, h)$, then $m=|A \cap[k]|=j . \quad$ Also, $g([m]) \cup h([m]) \subset A \cap[k]$,
which gives

$$
|g([m]) \cup h([m])|=m .
$$

Since g and h are strictly increasing, we must have $g=h$, and the proof is complete.

We are now in a position to establish the following useful theorem. Theorem 2.2: If Γ is an element of $\lambda(k)$, then

$$
|\Gamma| \leq 2^{n-k}+\sum_{m=1}^{k} \sum_{g \varepsilon C(m)} 2^{n-k+m-|U(\Gamma, m, g)|} .
$$

with equality if and only if $\Omega(\Gamma, m, g) \neq \emptyset$ for any pair (m, g).
Proof: From Lemma 2.1(a) and (c), we have

$$
|\Gamma|=|\{A \subset[n]: A \cap[k]=\emptyset\}|+\sum_{m=1}^{k} \sum_{g \varepsilon C(m)}|\Omega(\Gamma, m, g)|
$$

So from Lemma 2.1(b) we get

$$
|\Gamma| \leq 2^{n-k}+\sum_{m=1}^{k} \sum_{g \in C(m)} 2^{n-k+m-|U(\Gamma, m, g)|}
$$

with equality if and only if $\Omega(\Gamma, m, g) \neq \emptyset$ for any pair (m, g). The proof is complete.

3. THE FIRST TWO OF OUR MAIN RESULTS

The Case $0 \leq k \leq n$: The results are clear for $k=0$. In the following, we assume that $k \in[n]$.
Theorem 3.1: If n is a positive integer and $\Gamma \varepsilon \lambda(k)$, then

$$
|\Gamma| \leq\left(1+2^{k}\right) 2^{n-k-1}
$$

Proof: We proceed by induction on n. The case $n=1$ is true vacuously. Suppose $n>1$ and the result holds for all integers $j \in[n-1]$.

Case 1: $|U(\Gamma, m, g)|=m$ for some pair (m, g). Then we have $U(\Gamma, m, g) \subset[k]$.
Let $W \in \Gamma$ with $W \subset[k]$ and $|W|$ a minimum. Then $|W| \geq 2$ and $M(\Gamma, x)=W$ for each $x \in W$. Without loss, assume that $1 \varepsilon W$ and if $[n]-W \neq \emptyset$, assume that $[n]-W=\{2,3, \ldots, n-|W|+1\}$. Define a topology Δ on $[n-|W|+1]$ by the following family of minimum-cardinality open sets:

$$
M(\Delta, 1)=\{1\}, M(\Delta, x)=(M(\Gamma, x)-W) \cup\{1\} \text { if } M(\Gamma, x) \cap W \neq \emptyset
$$

and

$$
M(\Delta, x)=M(\Gamma, x) \text { otherwise. }
$$

It is not difficult to show that $|\Delta|=|\Gamma|$ and that Δ has $n-k+1$ open singletons. So by the induction hypothesis, we have

$$
|\Gamma| \leq\left(1+2^{k-|W|}\right) 2^{n-k} \leq\left(1+2^{k}\right) 2^{n-k-1}
$$

Case 2: $|U(\Gamma, m, g)|>m$ for each pair (m, g). Here we have

$$
|U(\Gamma, m, g)| \geq m+1
$$

for each pair (m, g) and, from Theorem 2.2, we get

$$
|\Gamma| \leq 2^{n-k}+\sum_{m=1}^{k} \sum_{g \in C(m)} 2^{n-k+m-|U(\Gamma, m, g)|} \leq 2^{n-k}+\left(\sum_{m=1}^{k}\binom{k}{m}\right) 2^{n-k-1}
$$

we see easily that

$$
2^{n-k}+\left(\sum_{m=1}^{k}\binom{k}{m}\right) 2^{n-k-1}=\left(1+2^{k}\right) 2^{n-k-1}
$$

The proof is complete.
It is obvious that if $\Gamma \varepsilon \lambda(k)$ with $|U(\Gamma, m, g)|=m+1$ for each pair (m, g) then $|\Gamma|$ will be a maximum over $\lambda(k)$ and we will have

$$
|\Gamma|=\left(1+2^{k}\right)^{n-k-1} .
$$

If such a Γ has $|\Gamma|$ a maximum over $\lambda(k)$, we must have

$$
|M(\Gamma, x)|=2 \text { and }|M(\Gamma, x) \cap[k]|=1
$$

for each $x \in[k]$, since $g \varepsilon C(1)$ defined by $g(1)=x$ must satisfy

$$
|U(\Gamma, 1, g)|=2 \quad \text { and } \quad \Omega(\Gamma, 1, g) \neq \emptyset
$$

from Lemma 2.1(b). Moreover, if $x<y$ and $x, y \in$ [k], then

$$
|M(\Gamma, x) \cup M(\Gamma, y)|=3
$$

since $g \in C(2)$ defined by $g(1)=x$ and $g(2)=y$ must satisfy

$$
|U(\Gamma, 2, g)|=3 .
$$

Thus,

$$
M(\Gamma, x) \cap M(\Gamma, y) \neq \emptyset .
$$

This implies that there must be a $j \varepsilon[n]-[k]$ with $M(\Gamma, x)=\{x, j\}$ for each $x \in[k]$ and that
$\Gamma=\{A \subset[n]: A \cap[k]=\emptyset\} \cup\{A \subset[n]:\{x, j\} \subset A$ for each $x \in A \cap[k]\}$.
We have

$$
|\Gamma|=\left(1+2^{k}\right) 2^{n-k-1}
$$

from the arguments above and the second of our main results is realized.
Theorem 3.2: For $0 \leq k<n$, there is a topology on [n] with precisely $n-k$ open singletons and $\left(1+2^{k}\right) 2^{n-k-1}$ elements.

As a by-product of these main results, we obtain Stephen's result.
Corollary 3.3: The only topology on [n] having more than $3\left(2^{n-2}\right)$ open sets is the discrete topology. Moreover, this upper bound cannot be improved.

Proof: If the topology Γ on $[n]$ is not discrete, then $n>1$ and there is at least one nonopen singleton. If k is the number of nonopen singletons, we have, from Theorem 3.1, that

$$
|\Gamma| \leq 2^{n-1}+2^{n-k-1} \leq 2^{n-1}+2^{n-2}=3\left(2^{n-2}\right),
$$

and since $n \neq 1$, there is a topology on $[n]$ with precisely $3\left(2^{n-2}\right)$ elements, from Theorem 3.2. The proof is complete.

4. OUR FINAL TWO MAIN RESULTS

The Case $k=n$: It is obvious that for $k=n$, no topology on $[n$] has $\left(1+2^{k}\right) 2^{n-k-1}$
elements. If $\Gamma \varepsilon \lambda(n)$, we let

$$
\mathscr{P}(\Gamma)=\{A \subset[n]: A=M(\Gamma, x) \text { for each } x \in A, \text { and } \neq \emptyset\}
$$

It is clear from the argument in Case 1 of Theorem 3.1 that $\mathcal{P}(\Gamma) \neq \emptyset$.
Theorem 4.1: If Γ is an element of $\lambda(k)$ which has maximum cardinality over $\overline{\lambda(k), ~ t h e n ~}|A|=2$ for each $A \varepsilon P(\Gamma)$.
Proof: If $A \in \mathcal{P}(\Gamma)$ with $|A|>2$, choose $x, y \in A$ with $x \neq y$ and let

$$
\Delta=\{V \cup(B \cap\{x, y\}): V, B \in \Gamma\} .
$$

Then $\Delta \varepsilon \lambda(k), \Gamma \subset \Delta$, and $\Gamma \neq \Delta$. The proof is complete.
Theorem 4.2: If Γ is an element of $\lambda(n)$, then $|\Gamma| \leq 1+2^{n-2}$.
Proof: Let $\Gamma \varepsilon \lambda(n)$ with $|\Gamma|$ a maximum. Then $|A|=2$ for each $A \varepsilon \mathcal{P}(\Gamma)$. For each $i \varepsilon[|P(\Gamma)|]$, let

$$
P(i)=\{n-2|P(\Gamma)|+i, n-i+1\} ;
$$

without loss, assume that

$$
P(\Gamma)=\{P(i): i \varepsilon[|P(\Gamma)|]\}
$$

and that

$$
[n]-\bigcup_{\Phi(\Gamma)} A=[n-2|\Phi(\Gamma)|] \quad \text { if } \quad n \neq 2|\Phi(\Gamma)|
$$

Define a topology Δ on $[n-|\mathcal{P}(\Gamma)|]$ by specifying its minimum-cardinality open sets for each $x \varepsilon[n-|P(\Gamma)|]$ as

$$
M(\Delta, x)=\left(M(\Gamma, x)-\bigcup_{\Phi(\Gamma)} A\right) \cup\{n-2|\Phi(\Gamma)|+i: P(i) \cap M(\Gamma, x) \neq \emptyset\}
$$

Then Δ has precisely $|P(\Gamma)|$ open singletons and $|\Gamma|=|\Delta| . \quad$ By Theorem 3.1,

$$
|\Gamma| \leq\left(1+2^{n-2|\Phi(\Gamma)|}\right) 2^{|\varphi(\Gamma)|-1}
$$

where the expression on the right side of the inequality decreases as $|\mathcal{P}(\Gamma)|$ increases. Thus, $|\Gamma| \leq 1+2^{n-2}$ for all $\Gamma \varepsilon \lambda(n)$ and the proof is complete.

Theorem 4.3: For $n>1$, there is a topology on [n] with no open singletons and $1+2^{n-2}$ elements.
Proof: From Theorem 3.2, there is a topology Γ on $[n-1]$ with $1+2^{n-2}$ elements. For this topology, $M(\Gamma, x)=\{x, n-1\}$ for $x \neq n-1$ and $M(\Gamma, n-1)=$ $\{n-1\}$ may be assumed to be the minimum-cardinality open sets. Let

$$
\Delta=\{A \subset[n]: M(\Gamma, x) \cup\{n\} \subset A \text { when } M(\Gamma, x) \subset A\} .
$$

Then Δ is a topology on $[n]$ with no open singletons and $|\Delta|=|\Gamma|$. The proof is complete.

5. SOME FINAL REMARKS

The following observations may be made from the Theorems and constructions above.

Remark 5.1: It is easy to construct for each $1 \leq j \leq n-k$ a topology $\Gamma \varepsilon \lambda(k)$ with cardinality $\left(2^{k}+\left(-1+2^{j}\right)\right) 2^{n-k-j}$. Let $M(\Gamma, x)=\{x\}$ for each $x \varepsilon[n]-$ $[k]$ and $m(\Gamma, x)=\{x, k+1, k+2, \ldots, k+j\}$ for each $x \varepsilon[k]$. We see from Theorem 2.1 that $|\Gamma|$ is the required number.
Remark 5.2: More generally, if $k \varepsilon[n]$ and for each $x \varepsilon[k], W(x)$ is a nonempty subset of $[n]-[k]$, let Γ be the topology on $[n]$ having minimal cardinality open sets $M(\Gamma, x)=\{x\} \cup W(x)$ for $x \varepsilon[k]$ and $M(\Gamma, x)=\{x\}$ otherwise. Then from Theorem 2.1

$$
\left.|\Gamma|=2^{n-k}+\sum_{m=1}^{k} \sum_{g \in C(m)} 2^{n-k+m-(m+\mid} \mathbf{U}_{[m]} W(g(i)) \mid\right)
$$

since

$$
|U(\Gamma, m, g)|=\left|\bigcup_{[m]} M(\Gamma, g(i))\right|=|g([m])|+\left|\bigcup_{[m]} W(g(i))\right|=m+\left|\bigcup_{[m]} W(g(i))\right| .
$$

Remark 5.3: For each $\mathcal{k} \in[n]$, let

$$
\mu(k)=\{\Gamma \varepsilon \lambda(k): \Omega(\Gamma, m, g) \neq \emptyset \text { for any } \operatorname{pair}(m, g)\}
$$

Then $\mu(k)=\{\Gamma \varepsilon \lambda(k)$: for each $x \varepsilon[k], M(\Gamma, x)=\{x\} \cup W(x)$ for some nonempty $W(x) \subset[n]-[k]\}$. Thus $|\mu(k)|=\left(-1+2^{n-k}\right)^{k}$ for each subset of [n] of cardinality k. Therefore,

$$
\binom{n}{k}\left(-1+2^{n-k}\right)^{k}
$$

is the number of topologies, Γ, on $[n]$ such that

$$
\Gamma \varepsilon \lambda(k) \text { and } \Omega(\Gamma, m, g) \neq \emptyset \text { for any pair }(m, g) .
$$

The total number of such topologies is

$$
\sum_{k \in[n]}\binom{n}{k}\left(-1+2^{n-k}\right)^{k} .
$$

REFERENCES

1. N. L. Levine, "Simple Extensions of Topologies," Amer. Math. Monthly 71 (1964):22-25.
2. A. R. Mitchell \& R. W. Mitchell, "A Note on Topologies on Finite Sets," The Fibonacci Quarterly 13, No. 3 (1975):365, 368.
3. D. Stephen, "Topology on Finite Sets," Amer. Math. Monthly 75 (1968):739741.
