REFERENCES

- 1. G. E. Bergum & A. W. Kranzler, "Linear Recurrences, Identities and Divisibility Properties" (unpublished paper).
- Marjorie Bicknell & V. E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers," The Fibonacci Association, San Jose State University, San Jose, California.
- 3. Marjorie Bicknell-Johnson & V. E. Hoggatt, Jr., "Variations on Summing a Series of Reciprocals of Fibonacci Numbers," *The Fibonacci Quarterly* (to appear).
- Marjorie Bicknell-Johnson & V. E. Hoggatt, Jr., "A Reciprocal Series of Fibonacci Numbers with Subscripts 2ⁿk," The Fibonacci Quarterly (to appear).
- 5. I. J. Good, "A Reciprocal Series of Fibonacci Numbers," *The Fibonacci Quarterly* 12, No. 4 (1974):346.
- 6. I. J. Good & Paul S. Bruckman, "A Generalization of a Series of De Morgan with Applications of Fibonacci Type," *The Fibonacci Quarterly* (to appear).
- 7. D. A. Millin, Problem H-237, The Fibonacci Quarterly 12, No. 3 (1974): 309.

A NOTE ON 3-2 TREES*

EDWARD M. REINGOLD

University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

Under the assumption that all of the 3-2 trees of height h are equally probable, it is shown that in a 3-2 tree of height h the expected number of keys is $(.72162)3^h$ and the expected number of internal nodes is $(.48061)3^h$.

INTRODUCTION

One approach to the organization of large files is the use of "balanced" trees (see Section 6.2.3 of [3]). In particular, one such class of trees, suggested by J. E. Hopcroft (unpublished), is known as 3-2 trees. A 3-2 tree is a tree in which each internal node contains either 1 or 2 keys and is hence either a 2-way or 3-way branch, respectively. Furthermore, all external nodes (i.e., leaves) are at the same level. Figure 1 shows some examples of 3-2 trees.

Insertion of a new key into a 3-2 tree is done as follows to preserve the 3-2 property: To add a new key into a node containing one key, simply insert it as the second key; if the node already contains two keys, split it into two one-key nodes and insert (recursively) the middle key into the parent node. This may cause the parent node to be split in a similar way, if it already contains two keys. For more details about 3-2 trees see [1] and [3].

^{*}This research was supported by the Division of Physical Research, U.S. Energy Research and Development Administration, and by the National Science Foundation (Grant GJ-41538).

of height 0

(c) A 3-2 tree of height 3 with 15 keys, 11 internal nodes, and 16 external nodes (leaves)

FIGURE 1.-SOME EXAMPLES OF 3-2 TREES. THE SQUARES ARE EXTERNAL NODES (LEAVES), THE OVALS ARE INTERNAL NODES, AND THE DOTS ARE KEYS.

Yao [4] has studied the average number of internal nodes in a 3-2 tree with k keys, assuming that the tree was built by a sequence of k random insertions done by the insertion algorithm outlined above. He found the expected number of internal nodes to be between .70k and .79k for large k. Unfortunately, the distribution of 3-2 trees induced by the insertion algorithm is not well understood and Yao's techniques will probably not be extended to provide sharper bounds.

Using techniques like those in Khizder [2], some results can be obtained, however, for the (simpler) distribution in which all 3-2 trees of height are equally probable. In this paper we show that, under this simpler distribution, in a 3-2 tree of height h the expected number of keys and internal nodes are, respectively, $(.72162)3^{h}$ and $(.48061)3^{h}$.

ANALYSIS

Let $a_{n,k,h}$ be the number of 3-2 trees of height h with n nodes and k keys. Since there is a unique tree of height 0 (consisting of a single leaf-see Figure 1), and since a 3-2 tree of height h > 0 is formed from either two or three 3-2 trees of height h - 1, we have

$$a_{n,k,0} = \begin{cases} 1 & \text{if } n = k = 0 \\ 0 & \text{otherwise} \end{cases}$$

 $a_{n,k,h} = \sum_{\substack{i+j=n-1\\ u+v=k-1}} a_{i,u,h-1} a_{j,v,h-1} + \sum_{\substack{i+j+l=n-1\\ u+v+w=k-2}} a_{i,u,h-1} a_{j,v,h-1} a_{l,w,h-1}$ (1)

152

(a)

Let

$$A_h(x,y) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n,k,h} x^n y^k$$

be the generating function for $a_{n,k,h}$. From (1) we have

(2)
$$A_{0}(x,y) = 1$$
$$A_{h}(x,y) = xyA_{h-1}^{2}(x,y) + xy^{2}A_{h-1}^{3}(x,y)$$

and thus the number of 3-2 trees of height h is $A_h = A_h(1,1)$, the total number of keys in all 3-2 trees of height h is

$$K_{h} = \frac{\partial A_{h}(x,y)}{\partial y}\Big|_{x=y=1},$$

and the total number of internal nodes in all 3-2 trees of height h is

$$N_{h} = \frac{\partial A_{h}(x,y)}{\partial x} \bigg|_{x=y=1}.$$

The table gives the first few values for A_h , K_h , and N_h as calculated from the recurrence relations arising from (2).

h	$A_{h} = A_{h}(1,1)$	$K_{h} = \frac{\partial A_{h}(x, y)}{\partial y} \bigg _{x = y = 1}$	$N_{h} = \frac{\partial A_{h}(x, y)}{\partial x} \bigg _{x = y = 1}$
0	1	0	0
1	2	. 3	. 2
2	12	68	44
3	1872	34608	21936
4	6563711232	377092654848	237180213504

THE FIRST FEW VALUES FOR A_h , K_h , AND N_h

Assuming that all of the 3-2 trees of height h are equally probable, the average number of keys in a 3-2 tree of height h is given by

$$\kappa_{h} = \frac{K_{h}}{A_{h}} = \frac{\frac{\partial A_{h}(x,y)}{\partial y}}{A_{h}(x,y)} \bigg|_{x=y=1}$$

and the average number of internal nodes in a 3-2 tree of height h is given by

$$v_h = \frac{N_h}{A_h} = \frac{\frac{\partial A_h(x,y)}{\partial x}}{A_h(x,y)} \bigg|_{x=y=1}$$

To determine κ_h , we use the recurrence relations for A_h and K_h arising from (2):

A NOTE ON 3-2 TREES

and

$$\begin{split} A_{h} &= A_{h-1}^{2} + A_{h-1}^{3} \\ K_{0} &= 0 \\ K_{h} &= 2A_{h-1}K_{h-1} + A_{h-1}^{2} + 2A_{h-1}^{3} + 3A_{h-1}^{2}K_{h-1}. \end{split}$$

Rewriting the equation for \mathbf{K}_h in terms of \mathbf{K}_h gives

 $A_0 = 1$

$$K_{h} = \kappa_{h-1} (3A_{h} - A_{h-1}^{2}) + 2A_{h} - A_{h-1}^{2}$$
$$\kappa_{h} = \frac{K_{h}}{A_{h}} = \kappa_{h-1} \left(3 - \frac{A_{h-1}^{2}}{A_{h}}\right) + 2 - \frac{A_{h-1}^{2}}{A_{h}}$$
$$= 3\kappa_{h-1} + 2 - \frac{A_{h-1}^{2}}{A_{h}} (\kappa_{h-1} + 1)$$

giving

and so

$$(\kappa_h + 1) = 3(\kappa_{h-1} + 1) - \frac{K_{h-1} + A_{h-1}}{A_{h-1}^2 + A_{h-1}}$$

Letting $\varepsilon_h = \frac{K_h + A_h}{A_h^2 + A_h}$, we get

$$(\kappa_{h} + 1) = 3^{h}(\kappa_{0} + 1) - \sum_{i=1}^{n} 3^{i-1} \varepsilon_{h-i}.$$

But $\kappa_{0} + 1 = \frac{K_{0}}{A_{0}} + 1 = \frac{0}{1} + 1 = 1$, and so
$$K_{h} = \frac{k}{2} \left(-\sum_{i=1}^{h} \varepsilon_{h-i} \right) = 1 \left(-\sum_{i=1}^{h} \varepsilon_{h-i} \right)$$

(3)
$$\frac{\kappa_h}{A_h} + 1 = \kappa_h + 1 = 3^h \left(1 - \sum_{i=1}^h \frac{\varepsilon_{h-i}}{3^{h-i+1}} \right) = 3^h \left(1 - \sum_{i=0}^{h-1} \frac{\varepsilon_i}{3^{i+1}} \right)$$

i.e.,

$$\lim_{h \to \infty} \frac{1}{3^h} \left(\frac{K_h}{A_h} + 1 \right) = 1 - \sum_{i=0}^{\infty} \frac{\varepsilon_i}{3^{i+1}}.$$

What is $\sum_{i=0}^{\infty} \frac{\varepsilon_i}{3^{i+1}}$? It is easy to show by induction that $A_i^2 > K_i$ and so

$$\varepsilon_i = \frac{K_i + A_i}{A_i^2 + A_i} < 1.$$

The comparison test thus insures that the summation converges:

$$\sum_{i=0}^{\infty} \frac{\varepsilon_i}{3^{i+1}} < \sum_{i=0}^{\infty} \frac{1}{3^{i+1}} = \frac{1}{2}$$

Now, in order to use $\sum_{i=0}^{h} \frac{\varepsilon_i}{3^{i+1}}$ as an approximation to $\sum_{i=0}^{\infty} \frac{\varepsilon_i}{3^{i+1}}$ we need an upper

[April

A NOTE ON 3-2 TREES

bound on $\sum_{i=h+1}^{\infty} \frac{\varepsilon_i}{3^{i+1}}$. From the definition of ε_i , we have

(4)
$$\sum_{i=h+1}^{\infty} \frac{\varepsilon_i}{3^{i+1}} = \frac{1}{3} \sum_{i=h+1}^{\infty} \frac{1}{3^i} \frac{K_i + A_i}{A_i^2 + A_i} = \frac{1}{3} \sum_{i=h+1}^{\infty} \frac{\frac{1}{3^i} \frac{K_i}{A_i} + \frac{1}{3^i}}{A_i + 1}$$

From (3) and the fact that $0 < \varepsilon_i < 1$, we know that

$$\frac{1}{3^{h}}\frac{K_{h}}{A_{h}}+\frac{1}{3^{h}}=1-\sum_{i=0}^{h-1}\frac{\varepsilon_{i}}{3^{i+1}}<1,$$

and so (4) becomes

$$\sum_{i=h+1}^{\infty} \frac{\varepsilon_i}{3^{i+1}} < \frac{1}{3} \sum_{i=h+1}^{\infty} \frac{1}{A_i + 1} < \frac{1}{3} \sum_{i=h+1}^{\infty} \frac{1}{A_i} .$$

But since $A_h = A_{h-1}^2 + A_{h-1}^3 > 2A_{h-1}^2$, we have by induction that $A_h > \frac{1}{2} 2^{2^h}$, and so

$$\sum_{i=h+1}^{\infty} \frac{\varepsilon_i}{3^{i+1}} < \frac{2}{3} \sum_{i=h+1}^{\infty} 2^{-2^i} < \frac{2}{3} \left(2^{-2^{h+1}} + 2^{-2^{h+1}-1} \right) = 2^{-2^{h+1}}$$

Using the values in the table, we find that

$$\sum_{i=0}^{4} \frac{\varepsilon_i}{3^{i+1}} = .2783810593,$$

and thus

$$0 < \sum_{i=0}^{\infty} \frac{\varepsilon_i}{3^{i+1}} - .2783810593 < 2^{-2^5} < 3 \times 10^{-10}.$$

We conclude that

$$0 < \lim_{h \to \infty} \frac{1}{3^h} \left(\frac{K_h}{A_h} + 1 \right) - .7216189407 < 3 \times 10^{-10}.$$

Thus, under the assumption that all the 3-2 trees of height h are equally probable, the expected number of keys in a 3-2 tree of height h is

$$\kappa_h = \frac{K_h}{A_h} \approx (.7216189407)3^h.$$

A similar analysis works for v_h , the average number of internal nodes in a 3-2 tree of height h. We again use the recurrence relations arising from (2):

 $A_0 = 1$ $A_h = A_{h-1}^2 + A_{h-1}^3$

1979]

155

A NOTE ON 3-2 TREES

as before, and

$$N_0 = 0$$

N

$$\begin{aligned} &= 2A_{h-1}N_{h-1} + A_{h-1}^2 + A_{h-1}^3 + 3A_{h-1}^2N_{h-1} \\ &= 2A_{h-1}N_{h-1} + 3A_{h-1}^2N_{h-1} + A_h. \end{aligned}$$

Rewriting this last equation in terms of $v_h = N_h / A_h$ gives

$$N_{h} = V_{h-1} (3A_{h} - A_{h-1}^{2}) + A_{h},$$

and so

$$u_h = \frac{N_h}{A_h} = v_{h-1} \left(3 - \frac{A_{h-1}}{A_h} \right) + 1 = 3v_{h-1} + 1 - \frac{N_{h-1}}{A_h},$$

giving

$$\left(v_{h} + \frac{1}{2}\right) = 3\left(v_{h-1} + \frac{1}{2}\right) - \frac{N_{h-1}}{A_{h}}.$$

Letting $\delta_h = \frac{N_h}{A_h}$, we get

$$\left(v_{h} + \frac{1}{2}\right) = 3^{h}\left(v_{0} + \frac{1}{2}\right) - \sum_{i=1}^{h} 3^{i-1}\delta_{h-i}$$

But $v_0 + \frac{1}{2} = \frac{N_0}{A_0} + \frac{1}{2} = \frac{0}{1} + \frac{1}{2} = \frac{1}{2}$, and so

(5)
$$\frac{N_h}{A_h} + \frac{1}{2} = v_h + \frac{1}{2} = 3^h \left(\frac{1}{2} - \sum_{i=1}^h \frac{\delta_{h-i}}{3^{h-i+1}} \right) = 3^h \left(\frac{1}{2} - \sum_{i=0}^{h-i} \frac{\delta_i}{3^{i+1}} \right),$$

i.e.,

$$\lim_{h \to \infty} \frac{1}{3^h} \left(\frac{\mathbb{N}_h}{\mathbb{A}_h} + \frac{1}{2} \right) = \frac{1}{2} - \sum_{i=0}^{\infty} \frac{\delta_i}{3^{i+1}}.$$

What is $\sum_{i=0}^{\infty} \frac{\delta_i}{3^{i+1}}$? It is easy to show by induction that $A_{i+1} > N_i$ and so $\delta_i = N_i / A_{i+1} < 1$; hence, the comparison test insures that the summation converges:

$$\sum_{i=0}^{\infty} \frac{\delta_i}{3^{i+1}} < \sum_{i=0}^{\infty} \frac{1}{3^{i+1}} = \frac{1}{2}.$$

In order to use $\sum_{i=0}^{h} \frac{\delta_i}{3^{i+1}}$ as an approximation to $\sum_{i=0}^{\infty} \frac{\delta_i}{3^{i+1}}$ we need an upper bound on $\sum_{i=h+1}^{\infty} \frac{\delta_i}{3^{i+1}}$. From the definition of δ_i , we have

(6)
$$\sum_{i=h+1}^{\infty} \frac{\delta_i}{3^{i+1}} = \frac{1}{3} \sum_{i=h+1}^{\infty} \frac{\frac{1}{3^i} \frac{A_i}{A_i}}{A_i + A_i^2}.$$

156

[April

Since $0 < \delta_i < 1$, (5) tells us that

$$\frac{1}{3^{h}}\frac{N_{h}}{A_{h}}=\frac{1}{2}\left(1-\frac{1}{3^{h}}\right)-\sum_{i=0}^{h-1}\frac{\delta_{i}}{3^{i+1}}<\frac{1}{2},$$

and so (6) becomes

$$\sum_{i=h+1}^{\infty} \quad \frac{\delta_i}{3^{i+1}} < \frac{1}{6} \sum_{i=h+1}^{\infty} \frac{1}{A_i + A_i^2} < \frac{1}{6} \sum_{i=h+1}^{\infty} \frac{1}{A_i^2} \; .$$

Recalling that $A_i > \frac{1}{2} 2^{2^i}$, this becomes

$$\sum_{i=h+1}^{\infty} \frac{\delta_i}{3^{i+1}} < \frac{1}{6} \sum_{i=h+1}^{\infty} 4 \cdot 2^{-2^{i+1}} = \frac{2}{3} \sum_{i=h+2}^{\infty} 2^{-2^i} < \frac{2}{3} \left(2^{-2^{k+2}} + 2^{-2^{k+2}-1} \right) = 2^{-2^{k+2}}.$$

Using the values in the table, we find that

$$\sum_{i=0}^{3} \frac{\delta_i}{3^{i+1}} = .0193890884,$$

and thus

$$0 < \sum_{i=0}^{\infty} \frac{\delta_i}{3^{i+1}} - .0193890884 < 2^{-2^{5}} < 3 \times 10^{-10}.$$

We conclude that

$$0 < \lim_{h \to \infty} \frac{1}{3^h} \left(\frac{N_h}{A_h} + \frac{1}{2} \right) - .4806109116 < 3 \times 10^{-10}.$$

Thus, under the assumption that all 3-2 trees of height h are equally probable, the expected number of internal nodes in a 3-2 tree of height h is

$$v_h = \frac{N_h}{A_h} \approx (.4806109116)3^h.$$

REFERENCES

- 1. A. V. Aho, J. E. Hopcroft, & J. D. Ullman, The Design and Analysis of Computer Algorithms (Reading, Mass.: Addison-Wesley, 1974).
- L. A. Khizder, "Some Combinatorial Properties of Dyadic Trees," Zh. Vychisl. Matem. i Matem. Fiziki (Russian) 6, No. 2 (1966):389-394. English translation in USSR Comput. Math. and Math. Phys. 6, No. 2 (1966): 283-290.
- 3. D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching (Reading, Mass.: Addison-Wesley, 1973).
- 4. A. C. Yao, "On Random 3-2 Trees," Acta Informatica 9 (1978):159-170.
