REFERENCES

1. G. E. Bergum \& A. W. Kranzler, 'Linear Recurrences, Identities and Divisibility Properties" (unpublished paper).
2. Marjorie Bickne11 \& V. E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers," The Fibonacci Association, San Jose State University, San Jose, California.
3. Marjorie Bicknell-Johnson \& V. E. Hoggatt, Jr., "Variations on Summing a Series of Reciprocals of Fibonacci Numbers," The Fibonacci Quarterly (to appear).
4. Marjorie Bickne11-Johnson \& V. E. Hoggatt, Jr., "A Reciprocal Series of Fibonacci Numbers with Subscripts $2^{n} k$," The Fibonacci Quarterly (to appear).
5. I. J. Good, "A Reciprocal Series of Fibonacci Numbers," The Fibonacci Quarterly 12, No. 4 (1974):346.
6. I. J. Good \& Paul S. Bruckman, "A Generalization of a Series of De Morgan with Applications of Fibonacci Type," The Fibonacci Quarterly (to appear).
7. D. A. Millin, Problem H-237, The Fibonacci Quarterty 12, No. 3 (1974): 309.

* 为

A NOTE ON 3-2 TREES*

EDWARD M. REINGOLD
University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

Under the assumption that all of the 3-2 trees of height h are equally probable, it is shown that in a 3-2 tree of height h the expected number of keys is (.72162) 3^{h} and the expected number of internal nodes is (.48061) 3^{h}.

INTRODUCTION

One approach to the organization of large files is the use of "balanced" trees (see Section 6.2.3 of [3]). In particular, one such class of trees, suggested by J. E. Hopcroft (unpublished), is known as 3-2 trees. A 3-2 tree is a tree in which each internal node contains either 1 or 2 keys and is hence either a 2 -way or 3 -way branch, respectively. Furthermore, all external nodes (i.e., leaves) are at the same level. Figure 1 shows some examples of 3-2 trees.

Insertion of a new key into a $3-2$ tree is done as follows to preserve the 3-2 property: To add a new key into a node containing one key, simply insert it as the second.key; if the node already contains two keys, split it into two one-key nodes and insert (recursively) the middle key into the parent node. This may cause the parent node to be split in a similar way, if it already contains two keys. For more details about 3-2 trees see [1] and [3].

[^0]
(c) A 3-2 tree of height 3 with 15 keys, 11 internal nodes, and 16 external nodes (leaves)

FIGURE 1.-SOME EXAMPLES OF 3-2 TREES. THE SQUARES ARE EXTERNAL NODES (LEAVES), THE OVALS ARE INTERNAL NODES, AND THE DOTS ARE KEYS.

Yao [4] has studied the average number of internal nodes in a 3-2 tree with k keys, assuming that the tree was built by a sequence of k random insertions done by the insertion algorithm outlined above. He found the expected number of internal nodes to be between . $70 k$ and $.79 k$ for large k. Unfortunately, the distribution of 3-2 trees induced by the insertion algorithm is not well understood and Yao's techniques will probably not be extended to provide sharper bounds.

Using techniques like those in Khizder [2], some results can be obtained, however, for the (simpler) distribution in which all 3-2 trees of height are equally probable. In this paper we show that, under this simpler distribution, in a 3-2 tree of height h the expected number of keys and internal nodes are, respectively, (.72162) 3^{h} and (.48061) 3^{h}.

ANALYSIS
Let $a_{n, k, h}$ be the number of $3-2$ trees of height h with n nodes and k keys. Since there is a unique tree of height 0 (consisting of a single leaf-see Figure 1), and since a 3-2 tree of height $h>0$ is formed from either two or three 3-2 trees of height $h-1$, we have

$$
\begin{gather*}
a_{n, k, 0}= \begin{cases}1 & \text { if } n=k=0 \\
0 & \text { otherwise }\end{cases} \\
a_{n, k, h}=\sum_{\begin{array}{r}
i+j=n-1 \\
u+v=k-1
\end{array}} a_{i, u, h-1} a_{j, v, h-1}+\sum_{\begin{array}{l}
i+j+z=n-1 \\
u+v+w=k-2
\end{array}} a_{i, u, h-1} a_{j, v, h-1} a_{2, w, h-1} \tag{1}
\end{gather*}
$$

Let

$$
A_{h}(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n, k, h} x^{n} y^{k}
$$

be the generating function for $\alpha_{n, k, h}$. From (1) we have

$$
\begin{align*}
& A_{0}(x, y)=1 \\
& A_{h}(x, y)=x y A_{h-1}^{2}(x, y)+x y^{2} A_{h-1}^{3}(x, y) \tag{2}
\end{align*}
$$

and thus the number of 3-2 trees of height h is $A_{h}=A_{h}(1,1)$, the total number of keys in all 3-2 trees of height h is

$$
K_{h}=\left.\frac{\partial A_{h}(x, y)}{\partial y}\right|_{x=y=1}
$$

and the total number of internal nodes in all 3-2 trees of height h is

$$
N_{h}=\left.\frac{\partial A_{h}(x, y)}{\partial x}\right|_{x=y=1} .
$$

The table gives the first few values for A_{h}, K_{h}, and N_{h} as calculated from the recurrence relations arising from (2).

THE FIRST FEW VALUES FOR A_{h}, K_{h}, AND N_{h}

h	$A_{h}=A_{h}(1,1)$	$K_{h}=\left.\frac{\partial A_{h}(x, y)}{\partial y}\right\|_{x=y=1}$	$N_{h}=\left.\frac{\partial A_{h}(x, y)}{\partial x}\right\|_{x=y=1}$
0	1	0	0
1	2	3	2
2	12	68	44
3	1872	34608	21936
4	6563711232	377092654848	237180213504

Assuming that all of the $3-2$ trees of height h are equally probable, the average number of keys in a 3-2 tree of height h is given by

$$
\kappa_{h}=\frac{K_{h}}{A_{h}}=\left.\frac{\frac{\partial A_{h}(x, y)}{\partial y}}{A_{h}(x, y)}\right|_{x=y=1}
$$

and the average number of internal nodes in a 3-2 tree of height h is given by

$$
\nu_{h}=\frac{N_{h}}{A_{h}}=\left.\frac{\frac{\partial A_{h}(x, y)}{\partial x}}{A_{h}(x, y)}\right|_{x=y=1}
$$

To determine K_{h}, we use the recurrence relations for A_{h} and K_{h} arising from (2):
and

$$
\begin{aligned}
& A_{0}=1 \\
& A_{h}=A_{h-1}^{2}+A_{h-1}^{3} \\
& K_{0}=0 \\
& K_{h}=2 A_{h-1} K_{h-1}+A_{h-1}^{2}+2 A_{h-1}^{3}+3 A_{h-1}^{2} K_{h-1} .
\end{aligned}
$$

Rewriting the equation for K_{h} in terms of K_{h} gives

$$
K_{h}=K_{h-1}\left(3 A_{h}-A_{h-1}^{2}\right)+2 A_{h}-A_{h-1}^{2}
$$

and so

$$
\begin{aligned}
\kappa_{h} & =\frac{K_{h}}{A_{h}}=\kappa_{h-1}\left(3-\frac{A_{h-1}^{2}}{A_{h}}\right)+2-\frac{A_{h-1}^{2}}{A_{h}} \\
& =3 \kappa_{h-1}+2-\frac{A_{h-1}^{2}}{A_{h}}\left(\kappa_{h-1}+1\right)
\end{aligned}
$$

giving

$$
\left(K_{h}+1\right)=3\left(K_{h-1}+1\right)-\frac{K_{h-1}+A_{h-1}}{A_{h-1}^{2}+A_{h-1}}
$$

Letting $\varepsilon_{h}=\frac{K_{h}+A_{h}}{A_{h}^{2}+A_{h}}$, we get

$$
\left(\kappa_{h}+1\right)=3^{h}\left(\kappa_{0}+1\right)-\sum_{i=1}^{h} 3^{i-1} \varepsilon_{h-i}
$$

But $\kappa_{0}+1=\frac{K_{0}}{A_{0}}+1=\frac{0}{1}+1=1$, and so

$$
\begin{equation*}
\frac{K_{h}}{A_{h}}+1=K_{h}+1=3^{h}\left(1-\sum_{i=1}^{h} \frac{\varepsilon_{h-i}}{3^{h-i+1}}\right)=3^{h}\left(1-\sum_{i=0}^{h-1} \frac{\varepsilon_{i}}{3^{i+1}}\right) \tag{3}
\end{equation*}
$$

i.e.,

$$
\lim _{h \rightarrow \infty} \frac{1}{3^{h}}\left(\frac{K_{h}}{A_{h}}+1\right)=1-\sum_{i=0}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}} .
$$

What is $\sum_{i=0}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}$? It is easy to show by induction that $A_{i}^{2}>K_{i}$ and so

$$
\varepsilon_{i}=\frac{K_{i}+A_{i}}{A_{i}^{2}+A_{i}}<1
$$

The comparison test thus insures that the summation converges:

$$
\sum_{i=0}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}<\sum_{i=0}^{\infty} \frac{1}{3^{i+1}}=\frac{1}{2}
$$

Now, in order to use $\sum_{i=0}^{h} \frac{\varepsilon_{i}}{3^{i+1}}$ as an approximation to $\sum_{i=0}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}$ we need an upper
bound on $\sum_{i=h+1}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}$. From the definition of ε_{i}, we have

$$
\begin{equation*}
\sum_{i=h+1}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}=\frac{1}{3} \sum_{i=h+1}^{\infty} \frac{1}{3^{i}} \frac{K_{i}+A_{i}}{A_{i}^{2}+A_{i}}=\frac{1}{3} \sum_{i=h+1}^{\infty} \frac{\frac{1}{3^{i}} \frac{K_{i}}{A_{i}}+\frac{1}{3^{i}}}{A_{i}+1} \tag{4}
\end{equation*}
$$

From (3) and the fact that $0<\varepsilon_{i}<1$, we know that

$$
\frac{1}{3^{h}} \frac{K_{h}}{A_{h}}+\frac{1}{3^{h}}=1-\sum_{i=0}^{h-1} \frac{\varepsilon_{i}}{3^{i+1}}<1
$$

and so (4) becomes

$$
\sum_{i=h+1}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}<\frac{1}{3} \sum_{i=h+1}^{\infty} \frac{1}{A_{i}+1}<\frac{1}{3} \sum_{i=h+1}^{\infty} \frac{1}{A_{i}} .
$$

But since $A_{h}=A_{h-1}^{2}+A_{h-1}^{3}>2 A_{h-1}^{2}$, we have by induction that $A_{h}>\frac{1}{2} 2^{2^{h}}$, and so

$$
\sum_{i=h+1}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}<\frac{2}{3} \sum_{i=h+1}^{\infty} 2^{-2^{i}}<\frac{2}{3}\left(2^{-2^{h+1}}+2^{-2^{h+1}-1}\right)=2^{-2^{h+1}}
$$

Using the values in the table, we find that

$$
\sum_{i=0}^{4} \frac{\varepsilon_{i}}{3^{i+1}}=.2783810593
$$

and thus

$$
0<\sum_{i=0}^{\infty} \frac{\varepsilon_{i}}{3^{i+1}}-.2783810593<2^{-2^{5}}<3 \times 10^{-10} .
$$

We conclude that

$$
0<\lim _{h \rightarrow \infty} \frac{1}{3^{h}}\left(\frac{K_{h}}{A_{h}}+1\right)-.7216189407<3 \times 10^{-10}
$$

Thus, under the assumption that all the 3-2 trees of height h are equally probable, the expected number of keys in a 3-2 tree of height h is

$$
K_{h}=\frac{K_{h}}{A_{h}} \approx(.7216189407) 3^{h} .
$$

A similar analysis works for V_{h}, the average number of internal nodes in a 3-2 tree of height h. We again use the recurrence relations arising from (2):

$$
\begin{aligned}
& A_{0}=1 \\
& A_{h}=A_{h-1}^{2}+A_{h-1}^{3}
\end{aligned}
$$

as before, and

$$
\begin{aligned}
N_{0} & =0 \\
N_{h} & =2 A_{h-1} N_{h-1}+A_{h-1}^{2}+A_{h-1}^{3}+3 A_{h-1}^{2} N_{h-1} \\
& =2 A_{h-1} N_{h-1}+3 A_{h-1}^{2} N_{h-1}+A_{h} .
\end{aligned}
$$

Rewriting this last equation in terms of $\nu_{h}=N_{h} / A_{h}$ gives

$$
N_{h}=\nu_{h-1}\left(3 A_{h}-A_{h-1}^{2}\right)+A_{h},
$$

and so

$$
\nu_{h}=\frac{N_{h}}{A_{h}}=\nu_{h-1}\left(3-\frac{A_{h-1}}{A_{h}}\right)+1=3 \nu_{h-1}+1-\frac{N_{h-1}}{A_{h}},
$$

giving

$$
\left(v_{h}+\frac{1}{2}\right)=3\left(v_{h-1}+\frac{1}{2}\right)-\frac{N_{h-1}}{A_{h}} .
$$

Letting $\delta_{h}=\frac{N_{h}}{A_{h}}$, we get

$$
\left(\nu_{h}+\frac{1}{2}\right)=3^{h}\left(\nu_{0}+\frac{1}{2}\right)-\sum_{i=1}^{h} 3^{i-1} \delta_{h-i}
$$

But $\nu_{0}+\frac{1}{2}=\frac{N_{0}}{A_{0}}+\frac{1}{2}=\frac{0}{1}+\frac{1}{2}=\frac{1}{2}$, and so

$$
\begin{equation*}
\frac{N_{h}}{A_{h}}+\frac{1}{2}=\nu_{h}+\frac{1}{2}=3^{h}\left(\frac{1}{2}-\sum_{i=1}^{h} \frac{\delta_{h-i}}{3^{h-i+1}}\right)=3^{h}\left(\frac{1}{2}-\sum_{i=0}^{h-i} \frac{\delta_{i}}{3^{i+1}}\right) \tag{5}
\end{equation*}
$$

i.e.,

$$
\lim _{h \rightarrow \infty} \frac{1}{3^{h}}\left(\frac{N_{h}}{A_{h}}+\frac{1}{2}\right)=\frac{1}{2}-\sum_{i=0}^{\infty} \frac{\delta_{i}}{3^{i+1}} .
$$

What is $\sum_{i=0}^{\infty} \frac{\delta_{i}}{3^{i+1}}$? It is easy to show by induction that $A_{i+1}>N_{i}$ and so $\delta_{i}=N_{i} / A_{i+1}<1$; hence, the comparison test insures that the summation converges:

$$
\sum_{i=0}^{\infty} \frac{\delta_{i}}{3^{i+1}}<\sum_{i=0}^{\infty} \frac{1}{3^{i+1}}=\frac{1}{2}
$$

In order to use $\sum_{i=0}^{h} \frac{\delta_{i}}{3^{i+1}}$ as an approximation to $\sum_{i=0}^{\infty} \frac{\delta_{i}}{3^{i+1}}$ we need an upper bound on $\sum_{i=h+1}^{\infty} \frac{\delta_{i}}{3^{i+1}}$. From the definition of δ_{i}, we have
(6)

$$
\sum_{i=h+1}^{\infty} \frac{\delta_{i}}{3^{i+1}}=\frac{1}{3} \sum_{i=h+1}^{\infty} \frac{\frac{1}{3^{i}} \frac{N_{i}}{A_{i}}}{A_{i}+A_{i}^{2}}
$$

Since $0<\delta_{i}<1$, (5) tells us that

$$
\frac{1}{3^{h}} \frac{N_{h}}{A_{h}}=\frac{1}{2}\left(1-\frac{1}{3^{h}}\right)-\sum_{i=0}^{h-1} \frac{\delta_{i}}{3^{i+1}}<\frac{1}{2}
$$

and so (6) becomes

$$
\sum_{i=h+1}^{\infty} \frac{\delta_{i}}{3^{i+1}}<\frac{1}{6} \sum_{i=h+1}^{\infty} \frac{1}{A_{i}+A_{i}^{2}}<\frac{1}{6} \sum_{i=h+1}^{\infty} \frac{1}{A_{i}^{2}}
$$

Recalling that $A_{i}>\frac{1}{2} 2^{2^{i}}$, this becomes

$$
\sum_{i=h+1}^{\infty} \frac{\delta_{i}}{3^{i+1}}<\frac{1}{6} \sum_{i=h+1}^{\infty} 4 \cdot 2^{-2^{i+1}}=\frac{2}{3} \sum_{i=h+2}^{\infty} 2^{-2^{i}}<\frac{2}{3}\left(2^{-2^{k+2}}+2^{-2^{k+2}-1}\right)=2^{-2^{k+2}}
$$

Using the values in the table, we find that
and thus

$$
\sum_{i=0}^{3} \frac{\delta_{i}}{3^{i+1}}=.0193890884
$$

$$
0<\sum_{i=0}^{\infty} \frac{\delta_{i}}{3^{i+1}}-.0193890884<2^{-2^{5}}<3 \times 10^{-10}
$$

We conclude that

$$
0<\lim _{h \rightarrow \infty} \frac{1}{3^{h}}\left(\frac{N_{h}}{A_{h}}+\frac{1}{2}\right)-.4806109116<3 \times 10^{-10} .
$$

Thus, under the assumption that all 3-2 trees of height h are equally probable, the expected number of internal nodes in a 3-2 tree of height h is

$$
\nu_{h}=\frac{N_{h}}{A_{h}} \approx(.4806109116) 3^{h} .
$$

REFERENCES

1. A. V. Aho, J. E. Hopcroft, \& J. D. Ullman, The Design and Analysis of Computer Algorithms (Reading, Mass.: Addison-Wesley, 1974).
2. L. A. Khizder, "Some Combinatorial Properties of Dyadic Trees," Zh. Vychist. Matem. i Matem. Fiziki (Russian) 6, No. 2 (1966):389-394. English translation in USSR Comput. Math. and Math. Phys. 6, No. 2 (1966): 283-290.
3. D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching (Reading, Mass.: Addison-Wesley, 1973).
4. A. C. Yao, "On Random 3-2 Trees," Acta Informatica 9 (1978):159-170.

[^0]: *This research was supported by the Division of Physical Research, U.S. Energy Research and Development Administration, and by the National Science Foundation (Grant GJ-41538).

