ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, PA 17745
Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN STATE COLLEGE, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within two months of publication of the problems.

H-302 Proposed by Ceorge Berzsenyi, Lamar University, Beaumont, TX
Let c be a constant and define the sequence $\left\langle a_{n}\right\rangle$ by $a_{0}=1, a_{1}=2$, and $a_{n}=2 a_{n-1}+c a_{n-2}$ for $n \geq 2$. Determine the sequence $\left\langle b_{n}\right\rangle$ for which

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k} b_{k} .
$$

H-303 Proposed by Paul Bruckman, Concord, CA
If $0<s<1$, and n is any positive integer, let
and
(1) $H_{n}(s)=\sum_{k=1}^{n} k^{-s}$,
(2) $\quad \theta_{n}(s)=\frac{n^{1-s}}{1-s}-H_{n}(s)$.

Prove that $\lim _{n \rightarrow \infty} \theta_{n}(s)$ exists, and find this limit.
H-304 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA
(a) Show that there is a unique partition of the positive integers, N, into two sets, A_{1} and A_{2}, such that
$A_{1} \cup A_{2}=n, \quad A_{1} \cap A_{2}=\emptyset$,
and no two distinct elements from the same set add up to a Lucas number.
(b) Show that every positive integer, M, which is not a Lucas number is the sum of two distinct elements of the same set.

H-305 Proposed by Martin Schechter, Swarthmore College, Swarthmore, PA
For fixed positive integers, m, n, define a Fibonacci-like sequence as follows:

$$
S_{1}=1, S_{2}=m, S_{k}= \begin{cases}m S_{k-1}+S_{k-2} & \text { if } k \text { is even } \\ n S_{k-1}+S_{k-2} & \text { if } k \text { is odd } .\end{cases}
$$

(Note that for $m=n=1$, one obtains the Fibonacci numbers.)
(a) Show the Fibonacci-1ike property holds that if j divides k then S_{j} divides S_{k} and in fact that $\left(S_{q}, S_{r}\right)=S_{(q, r)}$ where (,) g.c.d.
(b) Show that the sequence obtained when
$[m=1, n=4]$ and when $[m=1, n=8]$, respectively, have only the element 1 in common.

H-306 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA
(a) Prove that the system S,

$$
a+b=F_{p}, \quad b+c=F_{q}, \quad c+a=F_{p}
$$

cannot be solved in positive integers if F_{p}, F_{q}, F_{r} are positive Fibonacci numbers.
(b) Likewise, show that the system T,

$$
a+b=F_{p}, b+c=F_{q}, c+d=F_{r}, d+e=F_{s}, e+a=F_{t}
$$

has no solution under the same conditions.
(c) Show that if F_{p} is replaced by any positive non-Fibonacci integer, then S and T have solutions.

If possible, find necessary and sufficient conditions for the system U, $a+b=F_{p}, b+c=F_{q}, c+d=F_{r}, d+a=F_{s}$,
to be solvable in positive integers.

SOLUTIONS

Indifferent

H-276 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA

Show that the sequence of Bell numbers, $\left\{B_{i}\right\}_{i=0}^{\infty}$ is invariant under repeated differencing.

$$
B_{0}=1, B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}, \quad(n \geq 0)
$$

Solution by Paul S. Bruckman, Concord CA
The following exponential inversion formula is well known:
(1) $f(n)=\sum_{k=0}^{n}\binom{n}{k} g(k)$ iff $g(n)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} f(k)$.

Setting $g(n)=B_{n}$ and $f(n)=B_{n+1}$ in (1), we obtain the result:
(2) $\quad B_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} B_{k+1}, \quad n=0,1,2, \ldots$.

However, the right member of (2) is precisely $\Delta^{n} B_{1}$. Hence,
(3) $\Delta^{n} B_{1}=B_{n}, \quad n=0,1,2, \ldots$.

Also solved by N. Johnson and the proposer.
OLDER STUMPERS!
H-254 Proposed by R. Whitney, Lock Haven State College, Lock Haven, PA Consider the Fibonacci-Pascal-type triangle given below.

Find a formula for the row sums of this array.
H-260 Proposed by H. Edgar, San Jose State University, San Jose, CA
Are there infinitely many subscripts, n, for which F_{n} or L_{n} are prime?
H-271 Proposed by R. Whitney, Lock Haven State College, Lock Haven, PA
Define the binary dual, D, as follows:

$$
D=\left\{t \mid t=\prod_{i=0}^{n}\left(\alpha_{i}+2 i\right) ; \quad a_{i} \varepsilon\{0,1\} ; n \geq 0\right\}
$$

Let \bar{D} denote the complement of D with respect to the set of positive integers. Form a sequence, $\left\{S_{n}\right\}_{n=1}^{\infty}$, by arranging \bar{D} in increasing order. Find a formula for S_{n}.
(Note: The elements of D result from interchanging + and x in a binary number. D contains items like $2^{n} \cdot n!, 3 \cdot 2^{n-1_{n}}$!,)

