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Tfieo/iem 5.5: Let £ be a nonabelian 2-group with 

<G2> = <a> x <£>, where \a\ = n, \b\ = 2. 

Suppose (G2y contains exactly one element c which is not a square; also sup-
pose that either c i Gr or \Gr\ > 2, and [G:G!] = 4. G is not an £-group. 

The proof of this theorem is similar to that for Theorem 5.4. An ex-
ample is the group G of order 32 with presentation 

ah = b2 = c2 = d2 = 1, d'^ad = a, 

d~1od = eb, c~xac = a"1, 

where a2 and b are central elements. Here 

G' = <G2> = <a2,b>, 

and the element a2b is not a square. By Theorem 5.5 G is not an 5-group. 
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PART II: SPECIAL PROPERTIES 

In 1929, D. H. Lehmer, at Brown University, presented a summary [1] of 
discovered results concerning Stern's sequence. Also, in July 1967, some ad-
ditional results were reported by D. A. Lind [2]. In order to standardize 
the results, we will define Stern's sequence to be s(i,j) where 

(1) s(i,0) = 1, for i = 0, 1, 2, ... 
(2) s(0,j) = 0, for j = 1, 2, 3, ... 
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(3) s(n92k) = s(n9k)9 for n9k = 1, 2, 3, ... 
(4) s(n,2k + 1) = s(n - 1,/G) + s(n - l,k .+ 1). 

A table follows: 

STERN NUMBER TABLE 

Row 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

2 

0 
0 
1 
2 
2 
4 

•5 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

3 

0 
0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 

4 

0 
0 
0 
1 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

5 

0 
0 
0 
2 
5 
8 
11 
14 
17 
20 
23 
26 
29 
32 
35 
38 
41 
44 
47 

6 

0 
0 
0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 

7 

0. 
0 
0 
1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 

Cc 

8 

0 
0 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

>lumn 

9 

0 
0 
0 
0 
3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 
59 

10 

0 
0 
0 
0 
2 
5 
8 
11 
14 
17 
20 
23 
26 
29 
32 
35 
38 
41 
44 

11 

0 
0 
0 
0 
3 
8 
13 
18 
23 
28 
33 
38 
43 
48 
53 
58 
63 
68 
73 

12 

0 
0 
0 
0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 

13 

0 
0 
0 
0 
2 
7 
12 
17 
22 
27 
32 
37 
42 
47 
52 
57 
62 
67 
72 

14 

0 
0 
0 
0 
1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 

15 

0 
0 
0 
0 
1 
5 
9 
13 
17 
21 
25 
29 
33 
37 
41 
45 
49 
53 
57 

16 

0 
0 
0 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

17 

0 
0 
0 
0 
0 
4 
9 
14 
19 
24 
29 
34 
3'9 
44 
49 
54 
59 
64 
69 

18 

0 
0 
0 
0 
0 
3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 

The authors will attempt to move quickly through the properties of these 
numbers without proof. 

(1) The number of terms in row n is 2n + 1. 
(2) The sum of all terms in row n is 3n + 1. 
(3) The average value of all terms approaches (3/2)n. 
(4) The table is symmetric: 

s(n,k) = s(n92n + 2 - k) for 2n + 2 - k .> 0. 
(5) In three successive terms a9 b9 c9 (a + a) lb is an integer. 

(See Part I [3], Sections 4 and 11.) 
(6) Given a9 b9 and c again, then b occurs at 

s(n - k9 (a + a - b)/2b). (See [3], Section 4.) 
(7) Any two consecutive terms are relatively prime. 

(See [3], Section 5.) 
(8) Any ordered pair can only appear once in the table. 

(See [3], Section 6.) 
(9) If a l b = (fc, ki> k2» ...» km, 

in line (k + k1 + k2 + • • • + k m + r. 
(See [3], Section 10.) 

(10) The number of times that an element k can appear in the row k 
and all succeeding rows, is Euler's function 0(/c). 

!>„,_!) s then a and b appear together 
i - D . 

l, 
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(11) "p" is a prime if and only if it appears exactly (p - 1) times in 
line (p - 1). 

(12) s(n,r) will appear again at locations s(n + k, 2k(r - 1) + 1) for 
k = 1, 2, 3, ... ,. 

(13) If the sequence r1,r2 occurs in row n, v1 > r2, the smallest ele-
ment in row n + k positioned between P X and r2 is 

s(n + k, 2kr) ='r1 + kr2. 
(14) In any row, there are two equal terms greater than all others in 

the row. 
(15) For Fibonacci followers: 

s(n,r) = Fn + l9 for r = (2n_1 + 2 + {l + (-l)n})/3 - 1, 
and it is the largest element in the row. 

(See [3], p. 65; notation changed to standard form.) 

Not all of the discovered results are considered here, since there are 
remote connections to so many areas of number theory. 
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SUMS OF PRODUCTS: AN EXTENSION 
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The purpose of this note is to extend the results of Berzsenyi [1] and 
Zeilberger [3] on sums of products-by using the generalized sequence 

{Wn(a,b;p,q)} 
described by the author in [2], the notation of which will be assumed. 

Equation (4.18) of [2, p. 173] tells us that 

(1) Wn_rWn+r + t - WnWn + t = eqn~rUr_1Ur+t_r 

Putting n - v = k and summing appropriately, we obtain 

n n n 

k=0 k=0 k=o 

Values t = 1, t .= 0 give, respectively, 
n n n 

<3> E^+2» + i =HWk+^k+r + i+eUr_1Ur^qK 
and 


