Theorem 5.5: Let G be a nonabelian 2-group with

 $\langle G^2 \rangle = \langle a \rangle \times \langle b \rangle$, where |a| = n, |b| = 2.

Suppose $\langle G^2 \rangle$ contains exactly one element c which is not a square; also suppose that either $c \notin G'$ or |G'| > 2, and [G:G'] = 4. G is not an S-group.

The proof of this theorem is similar to that for Theorem 5.4. An example is the group G of order 3_2 with presentation

$$a^{4} = b^{2} = c^{2} = d^{2} = 1, d^{-1}ad = a,$$

 $d^{-1}cd = eb, c^{-1}ac = a^{-1},$

where a^2 and b are central elements. Here

$$G' = \langle G^2 \rangle = \langle a^2, b \rangle,$$

and the element a^2b is not a square. By Theorem 5.5 G is not an S-group.

REFERENCES

- 1. W. Burnside. Theory of Groups of Finite Order. Dover, 1955.
- 2. W. Burnside. "On Some Properties of Groups Whose Orders are Powers of Primes." Proc. Lond. Math. Soc. (2), 11 (1912):225-245.
- 3. R. D. Carmichael. Introduction to the Theory of Groups of Finite Order. Dover, 1956.
- 4. G. A. Miller. Collected Works, V. University of Illinois, 1959.
- 5. W. R. Scott. Group Theory. Prentice-Hall, 1964.
- 6. H. S. Sun. "Embedding a Set into a Group." Unpublished doctoral dissertation, University of New Brunswick, 1969.
- 7. H. S. Sun. "A Group Whose Squares Generate a Dicyclic Group." American Math. Monthly 78, No. 9 (1971).
- 8. H. S. Sun. "Embedding a Semigroup in a Ring." The Fibonacci Quarterly 13, No. 1 (1975):50.
- 9. H. S. Sun. "Embedding a Group in the pth Powers." The Fibonacci Quarterly 16, No. 1 (1978):4.

A PRIMER ON STERN'S DIATOMIC SEQUENCE-II

CHRISTINE GIULI

University of Santa Clara, Santa Clara, CA 95053

and ROBERT GIULI

University of California, Santa Cruz, CA 96050

PART II: SPECIAL PROPERTIES

In 1929, D. H. Lehmer, at Brown University, presented a summary [1] of discovered results concerning Stern's sequence. Also, in July 1967, some additional results were reported by D. A. Lind [2]. In order to standardize the results, we will define Stern's sequence to be s(i,j) where

(1) s(i,0) = 1, for i = 0, 1, 2, ...(2) s(0,j) = 0, for j = 1, 2, 3, ... (3) s(n,2k) = s(n,k), for n,k = 1, 2, 3, ...(4) s(n,2k+1) = s(n-1,k) + s(n-1,k+1).

A table follows:

	STERN	NUMBER	TABLE
--	-------	--------	-------

	Column																		
Row	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	3	2	3	1	2	1	1	0	0	0	0	0	0	0	0	0	0	0
4	1	4	2	5	1	5	3	4	1	3	2	3	1	2	1	1	0	0	0
5	1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1	4	3
6	1	6	- 5	9	4	11	7	10	3	11	8	13	5	12	7	9	2	9	7
7	1	7	-6	11	5	14	9	13	4	15	11	18	7	17	10	13	3	14	11
8	1	8	7	13	6	17	11	16	5	19	14	23	9	22	13	17	4	19	15
9	1	9	8	15	7	20	13	19	6	23	17	28	11	27	16	21	- 5	24	19
10	1	10	9	17	8	23	15	22	7	27	20	33	13	32	19	25	6	29	23
11	1	11	10	19	9	26	17	25	8	31	23	38	15	37	22	29	7	34	27
12	1	12	11	21	10	29	19	28	9	35	26	43	17	42	25	33	8	39	31
13	1	13	12	23	11	32	21	31	10	39	29	48	19	47	28	37	9	44	35
14	1	14	13	25	12	35	23	34	11	43	32	53	21	52	31	41	10	49	39
15	1	15	14	27	13	38	25	37	12	47	35	58	23	57	34	45	11	54	43
16	1	16	15	29	14	41	27	40	13	51	38	63	25	62	37	49	12	59	47
17	1	17	16	31	15	44	29	43	14	55	41	68	27	67	40	53	13	64	51
18	1	18	17	33	16	47	31	46	15	59	44	73	29	72	43	57	14	69	55

The authors will attempt to move quickly through the properties of these numbers without proof.

- (1) The number of terms in row n is $2^n + 1$.
- (2) The sum of all terms in row n is $3^n + 1$.
- (3) The average value of all terms approaches $(3/2)^n$.
- (4) The table is symmetric:
- $s(n,k) = s(n,2^n + 2 k)$ for $2^n + 2 k \ge 0$.
- (5) In three successive terms a, b, c, (a + c)/b is an integer. (See Part I [3], Sections 4 and 11.)
- (6) Given a, b, and c again, then b occurs at s(n k, (a + c b)/2b). (See [3], Section 4.)
- (7) Any two consecutive terms are relatively prime.(See [3], Section 5.)
- (8) Any ordered pair can only appear once in the table.(See [3], Section 6.)
- (9) If a/b = (k, k₁, k₂, ..., k_m, r_{m-1}), then a and b appear together in line (k + k₁ + k₂ + ... + k_m + r_{m-1} − 1). (See [3], Section 10.)
- (10) The number of times that an element k can appear in the row k 1, and all succeeding rows, is Euler's function O(k).

SUMS OF PRODUCTS: AN EXTENSION

- (11) "p" is a prime if and only if it appears exactly (p 1) times in line (p 1).
- (12) s(n,r) will appear again at locations $s(n + k, 2^{k}(r 1) + 1)$ for k = 1, 2, 3, ...
- (13) If the sequence r_1, r_2 occurs in row $n, r_1 > r_2$, the smallest element in row n + k positioned between r_1 and r_2 is $s(n + k, 2^k r) = r_1 + k r_2$.
- (14) In any row, there are two equal terms greater than all others in the row.
- (15) For Fibonacci followers: $s(n,r) = F_{n+1}$, for $r = (2^{n-1} + 2 + \{1 + (-1)^n\})/3 - 1$, and it is the largest element in the row.
 - (See [3], p. 65; notation changed to standard form.)

Not all of the discovered results are considered here, since there are remote connections to so many areas of number theory.

REFERENCES

- 1. D. H. Lehmer. "On Stern's Diatomic Series." American Math. Monthly 36 (1929):59-67.
- D. A. Lind. "An Extension of Stern's Diatomic Series." Duke Math. J., July 7, 1967.
- Christine & Robert Giuli. "A Primer on Stern's Diatomic Sequence, Part I." The Fibonacci Quarterly 17, No. 2 (1979):103-108.

SUMS OF PRODUCTS: AN EXTENSION

A. F. HORADAM

University of East Anglia, Norwich; University of New England, Armidale

The purpose of this note is to extend the results of Berzsenyi [1] and Zeilberger [3] on sums of products by using the generalized sequence

$\{W_n(a,b;p,q)\}$

described by the author in [2], the notation of which will be assumed. Equation (4.18) of [2, p. 173] tells us that

(1)
$$W_{n-r}W_{n+r+t} - W_{n}W_{n+t} = eq^{n-r}U_{r-1}U_{r+t-1}.$$

Putting n - r = k and summing appropriately, we obtain

(2)
$$\sum_{k=0}^{n} W_{k} W_{k+2r+t} = \sum_{k=0}^{n} W_{k+r} W_{k+r+t} + e U_{r-1} U_{r+t-1} \sum_{k=0}^{n} q^{k}.$$

Values t = 1, t = 0 give, respectively,

(3)
$$\sum_{k=0}^{n} W_{k} W_{k+2r+1} = \sum_{k=0}^{n} W_{k+r} W_{k+r+1} + eU_{r-1} U_{r} \sum_{k=0}^{n} q^{k},$$
and