MORE IN THE THEORY OF SEQUENCES

RADA HIGGINS
Howard University, Washington, D.C. 20001
INTRODUCTION
Cauchy gave a necessary condition for the convergence of an infinite series,

$$
\sum_{k=1}^{\infty} a(k) ;
$$

namely, that the sequence $(\alpha(n))$ converges to zero as n tends to infinity.
Olivier proved a variation of this theorem, which has, in a sense, generated more interest: Let $(\alpha(n))$ be a monotonic nonincreasing sequence of positive numbers, tending to zero, such that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a(k)
$$

exists, then $\lim _{n \rightarrow \infty} n \cdot \alpha(n)=0$.
For one thing, Olivier's theorem allows for extensions in several directions [4]. Niven and Zuckerman, for instance, have proved the following theorem [5]:

Theorem 1: Let $(\alpha(n))$ be a monotonic nonincreasing sequence of positive numbers. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{[\lambda n]} a(k) \tag{1}
\end{equation*}
$$

exists for each $\lambda>1$, if and only if $\lim _{n \rightarrow \infty} n \cdot \alpha(n)$ exists.
Clearly, Niven and Zuckerman's condition for the convergence of

$$
(n \cdot \alpha(n))
$$

is weaker than that of Olivier. On the other hand, they have given a necessary and sufficient condition for the convergence of

$$
\left(\sum_{k=n+1}^{[\lambda n]} a(k)\right)
$$

In this paper, Olivier's theorem will be extended further in this same direction. We consider a sequence of positive numbers ($\emptyset(n)$) (as yet unspecified) and a monotonic nonincreasing sequence of positive numbers ($\alpha(n)$), such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\emptyset(n)} \sum_{k=n+1}^{[\lambda n]} a(k)
$$

exists for every $\lambda>1$. We will show that $\lim _{n \rightarrow \infty} \frac{n \cdot a(n)}{\emptyset(n)}$ exists.

When $\emptyset(n)=1, n=1,2,3, \ldots$, the problem reduces to the case considered by Niven and Zuckerman. But more generally, as we will prove, ($\emptyset(n)$) can be any regularly varying sequence, i.e., any sequence of positive numbers which satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\emptyset([\lambda n])}{\emptyset(n)}=\psi(\lambda) \text { for every } \lambda>0 \tag{2}
\end{equation*}
$$

where $\psi(\lambda)=\lambda^{\rho}$, where the index ρ is real.
We summarize this result in Theorem 2.
Theorem 2: Let $(\emptyset(n))$ be a regularly varying sequence and let $(\alpha(n))$ be a monotonic nonincreasing sequence of positive numbers. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\bar{\emptyset}(n)} \sum_{k=n+1}^{[\lambda n]} \alpha(k)=H(\lambda) \tag{3}
\end{equation*}
$$

exists for each $\lambda>1$, if and only if $\lim _{n \rightarrow \infty} \frac{n \cdot \alpha(n)}{\emptyset(n)}$ exists.
Proof: Let

$$
H(\lambda)=\lim _{n \rightarrow \infty} H_{n}(\lambda)=\lim _{n \rightarrow \infty} \frac{1}{\emptyset(n)} \sum_{k=n+1}^{[\lambda n]} a(k)
$$

For each integer $m>\lambda$, let $n=[m / \lambda]$ in $H_{n}(\lambda)$ and let $r=m-[n \lambda]$. Since $0=m-m / \lambda \cdot \lambda \leq m-n \cdot \lambda$, we have $m \geq n \lambda=[n \lambda]$. Also,

$$
0 \leq r=m-[n \lambda]<m-(n \lambda-1)<m-(m / \lambda-1)=\lambda+1
$$

Since

$$
H_{n}(\lambda) \geq \frac{([n \lambda]-n) \cdot a([n \lambda])}{\emptyset(n)} \geq \frac{([n \lambda]-n) \cdot a(m)}{\emptyset(n)}
$$

and

$$
\frac{[n \lambda]+r}{[n \lambda]-n} \leq \frac{n \lambda+\lambda+1}{n \lambda-1-n} \leq \frac{m+\lambda+1}{(m / \lambda-1) \lambda-1-n} \leq \frac{m+\lambda+1}{m-\lambda-1-m / \lambda},
$$

we have

$$
\begin{aligned}
\frac{m \cdot a(m)}{\emptyset(n)}=\frac{m \cdot a(m)}{\emptyset(n)} \cdot \frac{\emptyset(n)}{\emptyset(m)} & \leq \frac{[n \lambda]+r}{[n \lambda]-n} \cdot H_{n}(\lambda) \cdot \frac{\emptyset[m / \lambda]}{\emptyset(m)} \\
& \leq \frac{m+\lambda+1}{m-\lambda-1-m / \lambda} \cdot H_{n}(\lambda) \cdot \frac{\emptyset([m / \lambda])}{\emptyset(m)}
\end{aligned}
$$

Hence, by (2),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{m \cdot a(m)}{\emptyset(m)} \leq \frac{\lambda}{\lambda-1} \cdot H(\lambda) \cdot(1 / \lambda)^{\rho} \tag{4}
\end{equation*}
$$

We assert that

$$
\lim _{n \rightarrow \infty} \frac{A([\lambda \mu n])-A([\mu n])}{\emptyset([\mu n])}=H(\lambda),
$$

where $\lambda>1, \mu>0$, and

$$
A([\lambda n])=\sum_{k=1}^{[\lambda n]} a(k)
$$

It is sufficient to show

$$
\lim _{n \rightarrow \infty} \frac{1}{\emptyset([\mu n])} \sum_{k=(\lambda[\mu n])+1}^{[\lambda \mu n]} a(k)=0
$$

since

$$
\frac{A([\lambda \mu n])-A([\mu n])}{\emptyset([\mu n])}=H_{[\mu n]}(\lambda)+\frac{1}{\emptyset([\mu n])} \sum_{k=(\lambda[\mu n])+1}^{[\lambda \mu n]} a(k)
$$

Clearly, by (2) and (4),

$$
\begin{aligned}
& \overline{\lim _{n \rightarrow \infty}} \frac{1}{\emptyset([\mu n])} \sum_{k=(\lambda[\mu n])+1}^{[\lambda \mu n]} a(k) \\
& =\overline{\lim }_{n \rightarrow \infty} \frac{\emptyset(\lambda[\mu n])}{\emptyset([\mu n])} \cdot \frac{([\lambda]+2)}{[\lambda[\mu n]]} \cdot \frac{[\lambda[\mu n]] a([\lambda[\mu n]])}{\emptyset([\lambda[\mu n]])}=0,
\end{aligned}
$$

so our assertion is proved.
Therefore, we have

$$
\begin{equation*}
H(\lambda \mu)=H(\lambda) \mu^{\rho}+H(\mu) \tag{5}
\end{equation*}
$$

since

$$
H_{n}(\lambda \mu)=\frac{A([\lambda \mu n])-A([\mu n])}{\emptyset([\mu n])} \cdot \frac{\emptyset([\mu n])}{\emptyset(n)}+\frac{A([\mu n])-A(n)}{\emptyset(n)} .
$$

Interchanging μ with λ in (5) and manipulating the equations simultaneously, we have, if $\rho \neq 0, H(\mu) / \mu^{\rho}-1=H(\lambda) / \lambda^{\rho}-1=A$, A a constant, which implies

$$
H^{\prime}(1)=\lim _{\lambda \rightarrow 1^{+}} \frac{H(\lambda)}{\lambda-1}=\lim _{\lambda \rightarrow 1^{+}} \frac{H(\lambda)}{\lambda^{\rho}-1} \cdot \lim _{\lambda \rightarrow 1^{+}} \frac{\lambda^{\rho}-1}{\lambda-1}=A \cdot \rho,
$$

or

$$
\begin{equation*}
H(\lambda)=\frac{H^{\prime}(1)}{\rho}\left(\lambda^{\rho}-1\right) \tag{6}
\end{equation*}
$$

If $\rho=0$, then $H(\lambda \mu)=H(\lambda)+H(\mu)$. Since $H(\cdot)$ is monotonic increasing, $H(\cdot)$ has a point of continuity and it is not hard to show $H(\cdot)$ is continuous on $[1, \infty]$. Hence $H(\cdot)$ is of the form
(7)

$$
H(\lambda)=H^{\prime}(1) \log \lambda
$$

Since

$$
H(\lambda) \leq \lim _{n \rightarrow \infty} \frac{n \cdot \alpha(n)}{\emptyset(n)} \cdot \frac{([\lambda n]-n)}{n}=(\lambda-1) \lim _{n \rightarrow \infty} \frac{n \cdot a(n)}{\emptyset(n)}
$$

we have

$$
H^{\prime}(1)=\lim _{\lambda \rightarrow 1} \frac{H(\lambda)}{\lambda-1}=\lim _{n \rightarrow \infty} \frac{n \cdot a(n)}{\emptyset(n)} .
$$

On the other hand, as a consequence of (4), we have

$$
\frac{H(\lambda)}{\lambda^{p}}=\lim _{n \rightarrow \infty} \frac{A(n)-A([n / \lambda])}{\emptyset(n)} \geq \lim _{n \rightarrow \infty} \sup \frac{(n-[n / \lambda])}{n} \cdot \frac{n \cdot a(n)}{\emptyset(n)} .
$$

Therefore, from (6) and (7),

$$
H^{\prime}(1)=\lim _{\lambda \rightarrow 1^{+}} \sup \frac{H(\lambda)}{\lambda^{\rho}(1-1 / \lambda)}=\lim _{n \rightarrow \infty} \sup \frac{n \cdot a(n)}{\emptyset(n)} .
$$

Hence,

$$
\lim _{n \rightarrow \infty} \frac{n \cdot a(n)}{\emptyset(n)}=H^{\prime}(1) .
$$

We now prove the converse.
Definition: Let $f(x)$ be a real valued, measurable function which satisties

$$
\lim _{x \rightarrow \infty} \frac{f(\lambda x)}{f(x)}=\lambda^{\rho}
$$

for every $\lambda>0$. Then $f(x)$ is a regularly varying function of index ρ.
Every regularly varying function $f(x)$ of. index ρ can be written as

$$
\begin{equation*}
f(x)=\lambda^{\rho} L(x) \tag{8}
\end{equation*}
$$

where $L(x)$ is regularly varying of index 0 (slowly varying). (See [2].)
Lemma 1: Let $(\emptyset(n))$ be a regularly varying sequence of index ρ, then the function $f(x)$ defined by

$$
f(x)=\emptyset([x])
$$

is a regularly varying function of index ρ.
Lemma 2: If $L(x)$ is a slowly varying function, then for every $[a, b], 0<\alpha<$ $\bar{b}<\infty$, the relation

$$
\lim _{x \rightarrow \infty} \frac{L(\lambda x)}{L(x)}=1
$$

holds uniformly with respect to $x \varepsilon[a, b]$.
Lemma 2, known as the Uniform Convergence Theorem for slowly varying functions, has been proved by several persons. A nice proof is given in [1] by Bojanic and Seneta. Lemma 1 is proved by the author in [3].

By hypothesis,

$$
\lim _{k \rightarrow \infty} \frac{k \cdot a(k)}{\emptyset(k)}=C .
$$

Also, by (8), $\emptyset(k)$ can be written as

$$
\phi(k)=k^{\rho} L(k),
$$

where $L(k)$ is slowly varying. Therefore, $(\alpha(k))$ can be written as

$$
a(k)=C(k) k^{\rho-1} L(k),
$$

where $\lim _{k \rightarrow \infty} C(k)=C$.
Consequently, for n sufficiently large,
where $\varepsilon>0$.

$$
\begin{aligned}
\frac{(C-\varepsilon)}{n^{\rho}} \min _{n \leq k \leq[\lambda n]} \frac{L(k)}{L(n)} \sum_{k=n+1}^{[\lambda n]} k^{\rho-1} & \leq \frac{1}{\emptyset(n)} \sum_{k=n+1}^{[\lambda n]} \alpha(k) \\
& \leq \frac{(C-\varepsilon)}{n^{\rho}} \max _{n \leq k \leq[\lambda n]} \frac{L(k)}{L(n)} \sum_{k=n+1}^{[\lambda n]} k^{\rho-1},
\end{aligned}
$$

Clearly,
and

$$
\min _{n \leq k \leq[\lambda n]} \frac{L(k)}{L(n)}=\min _{1 \leq k^{\prime} \leq \lambda} \frac{L\left(k^{\prime} n\right)}{L(n)}
$$

$$
\max _{n \leq k \leq[\lambda n]} \frac{L(k)}{L(n)}=\max _{1 \leq k^{\prime} \leq \lambda} \frac{L\left(k^{\prime} n\right)}{L(n)} .
$$

By Lemmas 1 and 2, we have

$$
\lim _{n \rightarrow \infty} \min _{1 \leq k^{\prime} \leq \lambda} \frac{L\left(k^{\prime} n\right)}{L(n)}=1=\overline{\lim _{n \rightarrow \infty}} \max _{1 \leq k^{\prime} \leq \lambda} \frac{L\left(k^{\prime} n\right)}{L(n)} .
$$

Therefore,
$\frac{(C-\varepsilon)}{n^{\rho}} \sum_{k=n+1}^{[\lambda n]} k^{\rho-1}=\lim _{n \rightarrow \infty} \frac{1}{\emptyset(n)} \sum_{k=n+1}^{[\lambda n]} a(k)=\overline{\lim _{n \rightarrow \infty}} \frac{1}{\emptyset(n)} \sum_{k=n+1}^{[\lambda n]} a(k)=\frac{(C+\varepsilon)}{n^{\rho}} \sum_{k=n+1}^{[\lambda n]} k^{\rho-1}$.
On the other hand,

$$
\sum_{k=n+1}^{\text {hand, }} k^{\rho-1} \simeq \begin{cases}\frac{\left(\lambda^{\rho}-1\right) n^{\rho}}{\rho} & \text { if } \rho \neq 0 \\ \log \lambda & \text { if } \rho=0\end{cases}
$$

Hence, letting $\varepsilon \rightarrow 0$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\emptyset(n)} \sum_{k=n+1}^{[\lambda n]} a(k)= \begin{cases}\frac{C\left(\lambda^{\rho}-1\right)}{\rho} & \text { if } \rho \neq 0 \\ C \log \lambda & \text { if } \rho=0\end{cases}
$$

and the converse is proved.
I am particularly grateful to Professor Ranko Bojanic for his suggestions and comments.

REFERENCES

1. R. Bojanic \& E. Seneta, "Slowly Varying Functions and Asymptotic Relations," J. Math. Analysis Appl. 34 (1971):302-315.
2. R. Bojanic \& E. Seneta, "A Unified Theory of Regularly Varying Sequences," Math. 2, No. 134 (1973):91-106.
3. R. Higgins, "On the Asymptotic Behavior of Certain Sequences" (Dissertation, Ohio State University, 1974).
4. S. Izumi \& G. Sunouchi, "A Note on Infinite Series," Proc. Jap. Imp. Acad. 18 (1942):532-534.
5. I. Niven \& H. S. Zuckerman, "On Certain Sequences," Amer. Math. Monthly 76 (1969):386-389.
