2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-176.
3. D. Zeilberger. "Sums of Products Involving Fibonacci Sequences." The Fibonacei Quarterly 15 (1977):155.

A CONJECTURE IN GAME THEORY

MURRAY HOCHBERG
Brooklyn College, Brooklyn, NY 11210
We consider a team composed of n players, with each member playing the same r games, $G_{1}, G_{2}, \ldots, G_{r}$. We assume that each game G_{j} has two possible outcomes, success and failure, and that the probability of success in game G_{j} is equal to p_{j} for each player. We let $X_{i j}$ be equal to one (1) if player i has a success in game j and let $X_{i j}$ be equal to zero (0) if player i has a failure in game j. We assume throughout this paper that the random variables $X_{i j}, i=1,2, \ldots, n, j=1,2, \ldots, r$ are independent.

Let $S_{j n}$ denote the total number of successes in the j th game. We define the point-value of a team to be

$$
\Psi_{n}=\min _{1 \leq j \leq r} S_{j n}
$$

This means that the point-value of a team is equal to the minimum number of successes in any particular game. C1early,
and

$$
P\left\{S_{j n}=m\right\}=\binom{n}{m} p_{j}^{m}\left(1-p_{j}\right)^{n-m}, m=0,1,2, \ldots, n
$$

$$
\begin{align*}
E\left[\Psi_{n}\right] & =\sum_{k=0}^{n} k P\left\{\Psi_{n}=k\right\}=\sum_{k=0}^{n-1} P\left\{\Psi_{n}>k\right\} \tag{1}\\
& =\sum_{k=0}^{n-1} P\left\{S_{1 n}>k, S_{2 n}>k, \ldots, S_{r n}>k\right\} \\
& =\sum_{k=0}^{n-1} \prod_{j=1}^{r} P\left\{S_{j n}>k\right\} \\
& =\sum_{k=0}^{n-1} \prod_{j=1}^{r} \sum_{m=k+1}^{n}\binom{n}{m} p_{j}^{m}\left(1-p_{j}\right)^{n-m} .
\end{align*}
$$

It follows from the definition of Ψ_{n} that the expected point-value for a team is an increasing function of n, i.e.,

$$
E\left[\Psi_{n}\right] \leq E\left[\Psi_{n+1}\right], n=1,2,3, \ldots
$$

Since a team can add players in order to increase its expected point-value, it seems reasonable to define the score to be the expected point-value per player. Namely, we denote the score by

$$
W_{n}=\frac{1}{n} E\left[\Psi_{n}\right] .
$$

Thus, from (1), we obtain

$$
\begin{equation*}
W_{n}=\frac{1}{n} \sum_{k=0}^{n-1} \prod_{j=1}^{r} \sum_{m=k+1}^{n}\binom{n}{m} p_{j}^{m}\left(1-p_{j}\right)^{n-m} \tag{2}
\end{equation*}
$$

It is not obvious from (2) how the score varies as the number of players increases. We now prove that W_{n} is a strictly increasing function of n in the special case $r=2$ and $p_{1}=p_{2}$. We first prove three lemmas, which are also of independent interest.
Lemma 1: Let a team be composed of j players, with each member playing the same two games, G_{1} and G_{2}. Let the probability of success for each player in both games G_{1} and G_{2} be equal and be denoted by p. Let $u_{j}=P\left\{S_{1 j}=S_{2 j}\right\}$, for all positive integers j. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p+q e^{i \theta}\right|^{2 j} d \theta=u_{j}
$$

where $q=1-p$.
Proof: Using the fact that

$$
P\left\{S_{i j}=m\right\}=\binom{j}{m} p^{m}(1-p)^{j-m}, m=0,1,2, \ldots, j, i=1,2,
$$

and the independence of the random variables $S_{1 j}$ and $S_{2 j}$, we obtain

$$
\begin{equation*}
u_{j}=\sum_{m=0}^{j}\left[\binom{j}{m}\right]^{2} p^{2 m}(1-p)^{2(j-m)}, j=1,2,3, \ldots \tag{3}
\end{equation*}
$$

We note that if f is the polynomial $f(z)=\sum_{m=0}^{j} a_{m} z^{m}$, then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta=\sum_{m=0}^{j} a_{m}^{2} . \tag{4}
\end{equation*}
$$

We now apply the binomial expansion and (4) to the function $f(z)=(p+q z)^{j}$, where j is a positive integer. The binomial expansion yields

$$
f(z)=(p+q z)^{j}=\sum_{m=0}^{j}\left[\binom{j}{m} p^{m} q^{j-m}\right] z^{j-m},
$$

and using (3) and (4), we obtain

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p+q e^{i \theta}\right|^{2 j} d \theta=\sum_{m=0}^{j}\left[\binom{j}{n}\right]^{2} p^{2 m} q^{2(j-m)}=u_{j} . \tag{5}
\end{equation*}
$$

Lemma 2: Let $p=2, p_{1}=p_{2}$, and $u_{j}=P\left\{S_{1 j}=S_{2 j}\right\}$, for all positive integers j. Then $u_{j}<u_{j-1}$.
Proof: Since
$\left|p+q e^{i \theta}\right|^{2} \leq 1$, for $0 \leq \theta \leq 2 \pi$
and

$$
\left|p+q e^{i \theta}\right|^{2}<1, \text { for } 0<\theta<2 \Pi \text {, }
$$

the desired result follows from (5).

Lemma 3: Let $u_{j}=P\left\{S_{1 j}=S_{2 j}\right\}$, for all positive integers j and let $u_{0}=1$. Let $d_{j}=\Psi_{j+1}-\Psi_{j}, j=0,1,2, \ldots$, and let $\Psi_{0}=0$. Then

$$
\begin{equation*}
E\left[d_{j}\right]=u_{j} p^{2}+\left(1-u_{j}\right) p \tag{6}
\end{equation*}
$$

Proo 6: Clearly, d_{j} can assume only the values 0 and 1 with the following probabilities:

$$
\begin{aligned}
& P\left\{d_{j}=0\right\}=1-\left[u_{j} p^{2}+\left(1-u_{j}\right) p\right], \\
& P\left\{d_{j}=1\right\}=u_{j} p^{2}+\left(1-u_{j}\right) p .
\end{aligned}
$$

Since $E\left[d_{j}\right]=0 \cdot P\left\{d_{j}=0\right\}+1 \cdot P\left\{d_{j}=1\right\}$, we obtain the desired result.
Theorem: Let a team be composed of n players, with each member playing the same two games, G_{1} and G_{2}. Let the probability of success for each player in both games G_{1} and G_{2} be equal and be denoted by p. Then

$$
W_{n}<W_{n+1}, n=1,2,3, \ldots .
$$

Proof: Using the definition of W_{n}, we obtain

$$
\begin{equation*}
W_{n+1}-W_{n}=E\left[\frac{\Psi_{n+1}}{n+1}-\frac{\Psi_{n}}{n}\right]=\frac{1}{n(n+1)} E\left[n\left(\Psi_{n+1}-\Psi_{n}\right)-\Psi_{n}\right] . \tag{7}
\end{equation*}
$$

Using d_{j}, as defined in Lemma 3, and noting that $\Psi_{n}=\sum_{j=0}^{n-1} d_{j}$, (7) reduces to

$$
W_{n+1}-W_{n}=\frac{1}{n(n+1)} E\left[n d_{n}-\sum_{j=0}^{n-1} d_{j}\right]
$$

Using (6), we obtain

$$
W_{n+1}-W_{n}=\frac{1}{n(n+1)}\left[n\left(u_{n} p^{2}+\left(1-u_{n}\right) p\right)-\sum_{j=0}^{n-1}\left(u_{j} p^{2}+\left(1-u_{j}\right) p\right)\right] .
$$

Thus, to prove that $W_{n}<W_{n+1}$, it suffices to show that

$$
\begin{equation*}
n\left(u_{n} p^{2}+\left(1-u_{n}\right) p\right)-\sum_{j=0}^{n-1}\left(u_{j} p^{2}+\left(1-u_{j}\right) p\right)>0 \tag{8}
\end{equation*}
$$

Proving inequality (8) is equivalent to showing that

$$
\begin{equation*}
n u_{n}-\sum_{j=0}^{n-1} u_{j}=\sum_{j=1}^{n} j\left(u_{j}-u_{j-1}\right)<0 . \tag{9}
\end{equation*}
$$

Since (9) follows from Lemma 2, we conclude that

$$
W_{n}<W_{n+1}, n=1,2,3, \ldots .
$$

It is the author's conjecture that in the general case discussed in the beginning of this paper $\left(r>2\right.$ and p_{1} not necessarily equal to $\left.p_{2}\right)$ that W_{n} is a strictly increasing function of n, too. The above proven theorem and some elementary numerical computations suggest the truth of this statement, but the author has not been able to supply a complete proof.

