(11) " p " is a prime if and only if it appears exactly ($p-1$) times in line ($p-1$).
(12) $s(n, r)$ will appear again at locations $s\left(n+k, 2^{k}(r-1)+1\right)$ for $k=1,2,3, \ldots$.
(13) If the sequence r_{1}, r_{2} occurs in row $n, r_{1}>r_{2}$, the smallest element in row $n+k$ positioned between r_{1} and r_{2} is

$$
s\left(n+k, 2^{k} r\right)=r_{1}+k r_{2} .
$$

(14) In any row, there are two equal terms greater than all others in the row.
(15) For Fibonacci followers:
$s(n, r)=F_{n+1}$, for $r=\left(2^{n-1}+2+\left\{1+(-1)^{n}\right\}\right) / 3-1$, and it is the largest element in the row.
(See [3], p. 65; notation changed to standard form.)
Not all of the discovered results are considered here, since there are remote connections to so many areas of number theory.

REFERENCES

1. D. H. Lehmer. "On Stern's Diatomic Series." American Math. Monthly 36 (1929):59-67.
2. D. A. Lind. "An Extension of Stern's Diatomic Series." Duke Math. J., July 7, 1967.
3. Christine \& Robert Giuli. 'A Primer on Stern's Diatomic Sequence, Part I." The Fibonacai Quarterly 17, No. 2 (1979):103-108.

SUMS OF PRODUCTS: AN EXTENSION

> A. F. HORADAM
> University of East Anglia, Norwich; University of New England, Armidale

The purpose of this note is to extend the results of Berzsenyi [1] and Zeilberger [3] on sums of products by using the generalized sequence

$$
\left\{W_{n}(a, b ; p, q)\right\}
$$

described by the author in [2], the notation of which will be assumed.
Equation (4.18) of [2, p. 173] tells us that

$$
\begin{equation*}
W_{n-r} W_{n+r+t}-W_{n} W_{n+t}=e q^{n-r_{U_{r-1}} U_{r+t-1}} . \tag{1}
\end{equation*}
$$

Putting $n-r=k$ and summing appropriately, we obtain

$$
\begin{equation*}
\sum_{k=0}^{n} W_{k} W_{k+2 r+t}=\sum_{k=0}^{n} W_{k+r} W_{k+r+t}+e U_{r-1} U_{r+t-1} \sum_{k=0}^{n} q^{k} . \tag{2}
\end{equation*}
$$

Values $t=1, t=0$ give, respectively,
and

$$
\begin{equation*}
\sum_{k=0}^{n} W_{k} W_{k+2 r+1}=\sum_{k=0}^{n} W_{k+r} W_{k+r+1}+e U_{r-1} U_{r} \sum_{k=0}^{n} q^{k}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n} W_{k} W_{k+2 r}=\sum_{k=0}^{n} W_{k+r}^{2}+e U_{r-1}^{2} \sum_{k=0}^{n} q^{k} \tag{4}
\end{equation*}
$$

If $q=-1$, then

$$
\sum_{k=0}^{n} q^{k}= \begin{cases}1 & \text { if } n \text { is even } \tag{5}\\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Using the Binet form for W_{n} and U_{n}, we find after calculation that (3) and (4), under the restrictions (5), become, respectively,

$$
\sum_{k=0}^{n} W_{k} W_{k+2 r+1}= \begin{cases}\frac{1}{p}\left(W_{r}^{2}+n+1-W_{r}^{2}\right)-W_{0} W_{2 r+1} & \text { if } n \text { is even } \tag{6}\\ \frac{1}{p}\left(W_{r+n+1}^{2}-W_{r}^{2}\right) & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\sum_{k=0}^{n} W_{k} W_{k+2 r}= \begin{cases}\frac{1}{p}\left(W_{r+n} W_{r}+n+1-W_{r} W_{r+1}\right)+W_{0} W_{2 r} & \text { if } n \text { is even } \tag{7}\\ \frac{1}{p}\left(W_{r+n} W_{r+n+1}-W_{r-1} W_{r}\right) & \text { if } n \text { is odd }\end{cases}
$$

When $p=1$, so that $W_{n}=H_{n}$ (and $U_{n}=F_{n}$), (6) and (7) reduce to the four formulas given by Berzsenyi[1]. That is, Berzsenyi's four formulas are special cases of (1), i.e., of equation (4.18) of [2].

Zeilberger's theorem [3] then generalizes as follows:
Theorem: If $\left\{Z_{n}\right\}$ and $\left\{W_{n}\right\}$ are two generalized Fibonacci sequences, in which $q=-1$, then

$$
\sum_{\substack{i, j=0}}^{n} a_{i, j} Z_{i} W_{j}=0
$$

if and only if

$$
P(z, \omega)=\sum_{i, j=0}^{n} a_{i j} z^{i} \omega^{j}
$$

vanishes on $\{(\alpha, \alpha),(\alpha, \beta),(\beta, \alpha),(\beta, \beta)\}$ where α, β are the roots of

$$
x^{2}-p x-1=0
$$

Zeilberger's example [3[now refers to

$$
\begin{equation*}
\sum_{k=0}^{n} Z_{k} W_{k+2 r+1}=\frac{1}{p}\left(Z_{r+n+1} W_{r+n+1}-Z_{r+1} W_{r+1}\right)+Z_{0} W_{2 r+1} \tag{8}
\end{equation*}
$$

(In both [1] and [3], m is used instead of our r. .)
Verification of the above results involves routine calculation. Difficulties arise when $q \neq-1$.

REFERENCES

1. G. Berzsenyi. "Sums of Products of Generalized Fibonacci Numbers." The Fibonacci Quarterly 13 (1975):343-344.
2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-176.
3. D. Zeilberger. "Sums of Products Involving Fibonacci Sequences." The Fibonacei Quarterly 15 (1977):155.

A CONJECTURE IN GAME THEORY

MURRAY HOCHBERG
Brooklyn College, Brooklyn, NY 11210
We consider a team composed of n players, with each member playing the same r games, $G_{1}, G_{2}, \ldots, G_{r}$. We assume that each game G_{j} has two possible outcomes, success and failure, and that the probability of success in game G_{j} is equal to p_{j} for each player. We let $X_{i j}$ be equal to one (1) if player i has a success in game j and let $X_{i j}$ be equal to zero (0) if player i has a failure in game j. We assume throughout this paper that the random variables $X_{i j}, i=1,2, \ldots, n, j=1,2, \ldots, r$ are independent.

Let $S_{j n}$ denote the total number of successes in the j th game. We define the point-value of a team to be

$$
\Psi_{n}=\min _{1 \leq j \leq r} S_{j n}
$$

This means that the point-value of a team is equal to the minimum number of successes in any particular game. C1early,
and

$$
P\left\{S_{j n}=m\right\}=\binom{n}{m} p_{j}^{m}\left(1-p_{j}\right)^{n-m}, m=0,1,2, \ldots, n
$$

$$
\begin{align*}
E\left[\Psi_{n}\right] & =\sum_{k=0}^{n} k P\left\{\Psi_{n}=k\right\}=\sum_{k=0}^{n-1} P\left\{\Psi_{n}>k\right\} \tag{1}\\
& =\sum_{k=0}^{n-1} P\left\{S_{1 n}>k, S_{2 n}>k, \ldots, S_{r n}>k\right\} \\
& =\sum_{k=0}^{n-1} \prod_{j=1}^{r} P\left\{S_{j n}>k\right\} \\
& =\sum_{k=0}^{n-1} \prod_{j=1}^{r} \sum_{m=k+1}^{n}\binom{n}{m} p_{j}^{m}\left(1-p_{j}\right)^{n-m} .
\end{align*}
$$

It follows from the definition of Ψ_{n} that the expected point-value for a team is an increasing function of n, i.e.,

$$
E\left[\Psi_{n}\right] \leq E\left[\Psi_{n+1}\right], n=1,2,3, \ldots
$$

Since a team can add players in order to increase its expected point-value, it seems reasonable to define the score to be the expected point-value per player. Namely, we denote the score by

$$
W_{n}=\frac{1}{n} E\left[\Psi_{n}\right] .
$$

