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Hence, we may r e p l a c e (4 .1 ) by 

(4 .2 ) 5 1 + L ( "D" ~ >F*(x,y,z) = 1. 
J a - i (1 - xs)(l - ys) j 

Comparing (4.2) with (2.16) and (2.16)', it follows at once that 

(4.3) f*(n,p,k) = c(n,p9k), 

where f*(n9p9k) is the limiting case (rn = °°) of f(n9p9k); (4.3) is of course 
to be expected from the definitions. 
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THE RECURRENCE RELATION (r + l)fr + 1 = xfr' + (K - r + l)*2/;..! 
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1. INTRODUCTION 

In a recent note, in [3], Worster conjectured, on the basis of computer 
calculations, that for each positive integer k there exists an odd polynomial 
Qik-i(x) °f degree 2k - 1 such that, for every zero a of the Bessel function 
J0 (x) 

l2k J„ = T„T (sy\ "|2k Qik-i(x)[JQ(x)] ZKdx = [aJx(a)]2 

'o 
The conjecture was extended and proved in [ 1 ] the extended result being: for 
each positive k there exists an odd polynomial Q(x), with nonnegative integer 
coefficients and of degree k or k - 1 according to whether k is odd or even, 
such that for every zero a of JQ (x) 

(1.1) / Q(x)[JQ (x)]kdx = (k - l)l[oJ1 (a)-]*. 
•'o 

If the factor (k - 1) ! on the right-hand side is omitted, then the coeffi-
cients in Q(x) are no longer integers. In addition, [1] also contained the 
following generalization due to Hammersley: if FQ9 F19 GQ , and G± are four 
functions of x such that 

dF0 dF-L 
G*~te = " F i ' ~dx~ = GiF° ' 

and FQ (a) = GQ (0) = 0 , so t h a t F± (0) = 0 , 

then there exists Q{x) depending only on GQ , G , and K with the property 
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(1 .2 ) (k - l)l[F1(a)]k = f Q(x){F,(x)]kdx. 

As is observed in [1], Worsteds extended conjecture corresponds to the case 
GQ (x) = G1(x) = x. 

Subsequently there has been some interest (see [2]) in the determination 
of the coefficients occurring in the Worster polynomial Q(x). In this paper 
we show that by considering a certain recurrence relation, namely that given 
in the title, the coefficients can be expressed as multiple sums. Also, we 
show how to determine these multiple sums analytically and numerically. To 
obtain the recurrence relation, which is central to the work, we first consi-
der an alternative proof to that given in [1] of Hammersley's generalization 
of Worster's conjecture. 

SECTION 2 

We begin by defining the function $(x) by 

k 

v = 0 

where fQ(x), f1(x), ..., fk(%) is some sequence of functions which, for the 
moment we leave unspecified. Differentiating the expression for <$)(x) 9 and 
omitting the argument x occurring in the various functions, we have 

r = 0 

Since GQF£ = -F1 and F[ = G±FQi we obtain 

* = 2L,yrF0Fl " ~G^F0 Fl + (& " V)fr G1F0 Fl h 

This can be put in the alternative and more convenient form 

k-l 

n - fK+ E ft _ (p + L) f + (fe _ r + i)/ £ WvWk~ 

0 ) r = l{_ 0 

+ </*'+/*_! W*-
We put fQ = (k - 1)1 and choose the functions fl9 f25 • • • » fk

 s o that the co-
efficients of F^Fk~r, r = 0, 1, 2, ..., ?c - 1 vanish. It immediately follows 
that f± = 0, while 

(2.1) (r + l)fp + 1 = ^ 0 { / ; + (fc - P + D/j.-xGi}* * = 1, 2, ..., k - 1. 

The sequence of functions /0 , j ^ , ..., fk is now completely defined, and it 
clearly depends only on k, GQ , and G±. For p _> 2, fr(0) = 0 since G0 (0) = 0 . 

The expression for (J)' reduces to 

(2.2) - «(,' = (̂  + 4 . , ^ ) ^ . 

Integrating (2.2) with respect to x between 0 and a, we obtain, reinserting 
arguments where appropriate, 



230 THE RECURRENCE RELATION ( r + 1 ) / r + l = xf'r + (K - r + })x2fT_1 [Oc t . 

E fp(x)F^(x)Fk
1-r(x) 

• 'O 

+/fc_1G1)F*d*. 

Using the properties of the various functions on the left-hand side of 
this equation, we deduce 

(k - l)lF^(a) = f (f'k + f ^ G ^ d * . 

Hence, the generalization stated in (2.2) follows immediately if we take 

If we define f by putting r - k in (2.1), then 

Omitting the factor (k - 1) ! occurring in (1.1) we see that the determination 
of Q(x) for the Worster problem is achieved by solving 

fa = i . A o 
(2.3) (r + l)fr + 1 = xf; + (k - r + l)x2fr_x, r = 1, 2, 

xQ(x) = (k + Dfk + l 

The following are readi ly deduced: 

., k 

kx 
J 2 2 ! ' J 3 

( 2 . 4 ) f5 = 

ft = 

23fcr2 

5! 

2fcc 
3! ' A 

22/c-r2 r1* 
^ f - + 3fc(fc - 2 ) ^ 

2"fcr2 

6! 

+ {3-4/c(fe - 2) + 2-4fc(fc - 3)}|y 

+ {3^2k(k - 2) + 2-42k(k - 3) + 225k(k - 4)}|y 

+ 3»5/c(fc - 2){k - 4) 6! 

Thus, we can find the first four of the polynomials Q{x) . These correspond 
to k = 2, 3, 4, and 5, respectively. We now proceed to establish a number of 
results concerning the functions fr. From these, we deduce expressions for 
the coefficients of the powers of x in Q(x). 

SECTION 3 

It is first convenient to prove the following results for multiple sums 

(3.1) 

and 

(3.2) 

We have 
-2 n 

n - l n + 1 n-1 n 

E E a
qP = E E a?p 

q=3 p = q + 2 q= 3p=^+2 

n-3 n-1 n+1 

E E E 
^ = 3 p=q + 2 i = p + 2 

n - 2 / n + 1 

n-1 

+ ^ a 

q = 3 

n- 4 n- 2 n 

q, n + 1 

n-3 n-1 
lqpl = L-J 2-J iL, aqpl + 2-< 2-J aqp,n+l< 

q=3 p=q + 2 i=p + 2 q=3 p=q + 2 

E L a^ = XN £ aG 
^ = 3 p=?+2 <7 = 3 

\ ^ J ^?p 
(p=<7 + 2 ) (/7 = 3 q=n-l) \p=q+2 ) q=3 
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When q = n - 1, p can only take the value n+1, so that the above expression 
reduces to 

n-1 n+1 n-2 n - 1 n + 1 n - 1 

XI E ^P ~ an-l ,n+l ~ E a<7,n + l " E E aqp ~ E 
q=3 p = q + 2 <? = 3 <7 = 3 p=q + 2 q=3 

q, n + 1• 

Thus the result given in (3.1) now follows. To prove (3.2) we proceed simi-
larly. 

n-h n-2 n n-h n-2 ^ n + 1 n+1 ] 

E E E aivi-= E 1L )1L • E a^1 
q = 3 p = q + 2 l = p + 2 q =3 p=q+2\ i=p + 2 l=n+l) 

n-h ( n-1 n - l 1 n+1 n-h n - 2 
= E ) X - E ( E a^£ - E E a^'-+i 

q=3 ^ P = q + 2 p=n-l) a=p+2 q=3 p=q+2 
n-h n-1 n+1 n-h n-h n-2 

a LJ jLi LJ a^Pl /-J aq>n-l,n+l J^ jLt^qp.n+l 
q=3 p=q+2 £ = p + 2 q = 3 q = 3 p=q + 2 

since I can only take the value n + 1 when p = n - 1. Continuing, we have 

n-h n-2 n n-3 n-1 n+1 n-h 

2-J L-J L-j aqp-l = Z-y 2-J E ac?Pi ~ an-3,n-l,n+l ~ ^ aq,n-l,n + l 
q=3 p=q+2 i=p+2 q=3 p=q+2 i=p+2 q=3 

n-h n-2 
,Q Q. " E E aqp,n + i 
KD.3) q = 3 p^q+2 

n - 3 n - 1 n + 1 n-3 n-h n-2 
= LJ E E a ^ P £ ~ E aq,n-l,n+l ~ /__j / ^ a<lP,n + l • 

q = 3 p=q + 2 l=p + 2 q = 3 q = 3 p=q + 2 

Using (3.1) with aqp,n+i instead of aqp and n replaced by n - 2 now leads us 
directly to (3.2). The results given in (3.1) and (3.2) can be extended to 
quadruple and higher-tuple sums. Thus, for quadruple sums the analogous re-
sult to (3.3) is 

n - 6 n-h n-2 n 

z z z z 
q=3 p=q+2 £ = P + 2 j = £ + 2 

n-5 n-3 n-1 n+1 n-6 
= 2_j E E E aclPl3 ~ an-5,n-3,n-l,n + l ~ 2-J aR >n-3 ,n - 1 ,n +1 

q=3 p = q + 2 l = p + 2 j = l + 2 c ? ~ 3 

n-h n - 6 n - 6 n - h n - 2 ~ E E aRP,n-l,n+l ~ E E E a?P£>* + 1 • 
c? = 3 p = <7 + 2 q=3 p = q+2 l = p + 2 

If we now apply (3.1) and (3.2) to this equation, we obtain the result for the 
quadruple sum. The general result for p-tuple sums can be written as follows: 

n - 2 p + 3 n - 2 p + 5 n-2p+2i + l n+1 n-2p + 2 n-ip + h n-lp + 2i 

E 1L -- 1L ••• E a^2 •-• qP
 = £ E ••• E 

^ i = 3 ^ 2 = ^ i + 2 <7.£= < ? ; _ ! + 2 < 7 p = < ? p - i + 2 ^ = 3 7 2 = ^ ! + 2 q.-q.^ + Z 
(3.4) 
v y n n - 2 p + 3 n - 2 p + 5 n-1 

' " E a<l1
c(2 '•- QP + ZL/ E " • 2 ^ a ^ < 7 2 , ^ p - i , n + l " 

^ i = 3 ^ 2 = ^ ! + 2 <7p- i = < 7 p - 2 + 2 
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The first of our results concerning the sequence of functions fr is 

(i) fiv* fir+i» where r -> 1, are even polynomials of degree 2r, the least 
power in each being that of x . This can be readily established using 
the recurrence relation in (2.3), the expressions in (2.4), and induc-
tion. Next, we prove: 

(ii) the coefficient of x2 in fr+1 is , , '" t , r = 1, 2, 3, ... . 

From the recurrence relation (2.3), we have that 

f* — "^ -ft _L X \K ~ V) j? 
J r + 2 r + 2 ̂  v +1 v + 2 ^ r 

Hence we see, with the help of (i) , that the term in x2 in fr+2 will 
arise from differentiating the term in x2 in fv+1 and multiplying by 

r + 2 

Assuming the result stated in (ii) is true for a specific r, then we 
have that the coefficient of x2 in fr+2 is 

2\ 
(r + 2) ! " 

Thus, induction with the aid of (2.4) completes the proof. 

(iii) The coefficient of xh in fr+1 is 

From the recurrence relation, we observe that the term in x in flt^.2 
arises from the term in x2 in fr and the differentiation of the term 
in x in fv fx. Assuming that (iii) is true for fixed P, then we have 
with the aid of (ii) that the coefficient of xh in fr+2 is 

-»*' - 2 , 
,r-qnq-3 

(r+2)r!
 + (r + 2 ) \ ^ { k " <? + 1 ) 4 2 

& " " --,-3 

which reduces to 

(r + 2)'Z^(k - ̂7 + D 4 27 . 
' c/ « 3 

Noting the expression for f. in (2.4) we see that induction completes 
our proof. 

(iv) The coefficient of x6 in fr+1 for v >_ 5 is 

(v I n , E ^ q(/c - ̂  + l)p(fc - p + 1)6P"P4 

The recurrence formula shows that to obtain the term in x6 in fr+2 we 
must consider the term in xh in fr and the result of differentiating 
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the term in xG in fr+1. If (iv) holds for a definite r then the coef-
ficient of x6 in fr+2 is seen, with the help of ( i i i ) , to be 

k - v kv~ 
VT~2^^{k ~ ? + 1 ) 4 2 

+
 ( r f 2 ) , E Z ^ -<7 + Dptt -P + De ' -V*"^ 

v ^"^7 = 3 p=q +2 

? = 3 

+ £ E ROi- q + Dp(k - p + l )6 r + 1 - p 4 p - ? - 2 2 
q=3 p=q+2 

q-3 

If we take 

aqp = q(k - q + l)p(fc - p + 1)6P+1 ~P4P " ^ V ~ 3 , 
we find 

^ . r + i = q(k - P ) ( P + l)q(/c - q + 1)4P_1~ V \ 
so that applying (3.1) with r instead of n we have the required coef-

>v + 2 : ficient of xG in f 

TjnhnrE E *<* - * + *>P<* - P + DS^-V^-V-3. 
<7 = 3 p=<7+2 

Induction now completes our proof, 

22" 3 
(v) The coefficient ofx2r±nf , v 2:3, is 

i , 

^ " 
p ! 

When /c is odd, we take (y)' and (-r- - r )! to be generalized factorial 

functions. Use of the recurrence relation (2.3) yields 

n = x ft 2 (k ~ 2r) f 
J 2P+2 2P + 2 j2p+l 2P + 2 J 2 P ' 

Noting (i), we see that it is the term 

x2(k - 2r) 
2v + 2 ̂ 2P 

which gives rise to the power xlr+2 in f2r+2 • Thus if (v) is correct 
for fixed r, then the coefficient of x2li+2 in f2r+2 is 

(2r + 2)rl(~ - rj! (p + 1) !^| - P - l) ! 
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Once more induction, with the help of the expression for /6 in (2.4), 
completes our proof. 

(vi) The coefficient of x2t in fr + 1 , 3 £ t <_ — ~ — , P >. 5, ..., is given 
by S(r9t) where * L J 

r-2£ + 4 r-2t+6 r-2t+2i+2 
k 

1 >k f 
qx=3 q2 = qi + 2 q. = q. _ + 2 ? t _ r ? t - 2 + 2 

and 

S(r't) = (P + i)t E E ••• E ••• E a ^ 2 ••• ^t.1(2'^) 
V y ' q =3 q=q, + 2 q=q. +2 <7+_,= ?,_,+2 

, ~ , <. r - Q ^ _ •, ~ v. - i — -

a 
J = 1 J " z 

, 1 ? 2 . . . ,,_,&».*) = ( 2 t ) p - 9 t - i 2 ? ' - 3 n ^ . ( f e - q . + i ) n ( y ) v ^ ' 1 " 2 

From the given expression, it is evident that S(r,t) is a (£- l)-tuple 
sum. It is readily verified that (vi) reduces to (iv) when t = 3. 
Further, some elementary manipulation shows that: 

S(2r - l,p) 
* ! 

V\\\ - P)! 

so that (vi) also agrees with the result in (v). It is perhaps worth 
noting that the qi in this latter case each take just one value, viz. 
qi = 1 + 2i (i = 1, 2, ..., v - 1). To prove (vi) we first show that 
if for fixed p and t the coefficients oi x2t in fr and a:2*-2 in /P_i 
are given, respectively, by S(P,£) and S(r - l,t - 1) then S (r + l,t) 
is the coefficient of x2t In f . Using the recurrence relation (2.3) 
in the form 

f = x f | k - r + 1 oj, 
Jr+2 P + 2

 J r+l p + 2 J r 

we have that the coefficient of x2t in fr + 2 is 

2t S(r,£) + k " ̂  t l Sir - l,t - 1) ^ + 2 ^K, ,u; p + 2 

which is equal to 

(r + 2)l E ••• E ^1^a-^.1fr + 1 ^ + 

(3 .5) v ^ = 3 it-r^t-i*2 

2'E+5 ••• E K<, ••• ^Sr -1>* ~ l)^k - x + 1)(p + 1 } 

? 1 = 3 ^ - 2 = ^ - 3 + 2 

Now 

= 2^~3(p + l)(fc - r -f n Y l V . t k - ?, + 1) 
* — i 

* I I ( 2 j ) ^ - ^ - i " 2 ( 2 t - 2 ) p - 1 - ^ -
J = 2 

= (fc - P + 1 ) ( P + l ) a a a . . . , Q (P - l , t - 1). 
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Hence, using (3.4) with n replaced by v and p by t - 1 we can see that 
(3.5) reduces to S(r + l,t). As already observed, the formula shown 
in (vi) correctly gives the coefficient of x6 in f6, f79 f8, ..., and 
also the coefficients of x8 in fQ, x10 In f1Q> x12 in f12, etc. Hence 
by the result just proved with It = v = 8 (vi) correctly gives the co-
efficient of x8 in /9. Applying the result again with It = r - 1 = 8, 
we see that formula (vi) correctly gives the coefficient of xs in f10 . 
Thus, continuing the process, we prove that formula (vi) is also cor-
rect for the coefficient of x8 in fn> f\2> ••• • ^n e Pr° cess is now 
repeated, starting with It - r - 10. By this means, we successively 
establish the formula for the coefficients of x8, ^r10, x12, etc. 

From (2.3) we have xQ(x) = (k + ^)fji + 1) so that it is now possible to 
deduce a number of results concerning Q(x). These are: 

9fc-i 
the coefficient of x is 

(fc ~ I ) ! ' 
k 7v _ r, rt _ -? 

and 
? = 3 

• 1 

that of x3 is ^ _ 1 } ! X ^ ( A : ~ ? + 1)4*~*2*~3, 

that of x2*'1 (t >_ 3) is the (t - 1)-tuple sum 
k-2t+^ k-2t+6 % 

a - 1 ) i 2 E ••• Z a?i?2 ••• £?t-i(^'t ) 

where 
t-i 

aqq ... q (k,t) = (2t)k-q^2qi-3U q,(k - q, + I) 

x n ( 2 j ) j V i . 
J = 2 

In the next section we show how the multiple sums can be determined and 
find them in certain cases. 

SECTION h 

Referring to the end of the last section we see that the coefficient of 
x3 in Q(x) can be written as 

0k- 3 

s(k) (k - 1)1 

where 

(4.1) S(k) = ^q(k - q + 1)2*"*. 
7 = 3 

We now put 

(4.2) S(k) = kS±(k) - S2(k) 

where 

(4.3) S±(k) = ]T?2 
q = 3 

and 

k-q 
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k 
(4.4) S2(k) = ^q(q - D 2 

7 = 3 

k-q 

These 

(4.5) 
and 
(4.6) 

series have the sums 

S1(k) = 2k - k 

S2(k) = 72fe_1 -

- 2 

k2 3k - 4. 

Hence 

S(k) = ilk - l)2k~1 + k + 4, 

giving the coefficient of ^3 as 

{k
2„ l){ {2k~1(2k - 7) + k + 4}. 

It is perhaps worth noting that this expression vanishes for k = 1 and 2. 
Again referring to the end of Section 3, we see that the coefficient of 

x5 in Q(x) can be written as 
>k-5 2 

TW), where (k - 1 ) ! 
k-2 

7(W = Z S { ^ " ^ ~ ^}{kP ~ P<P - D>3fe"P2 
7 = 3 p = 7 + 2 

P u t t i n g 

(4 .7 ) T(k) = k2T1(k) - kT2(k) + T3(k), 

then k_ 2 fe 

(4 .8 ) ^ ( f c ) = £ £ p q 3 k - p 2 p - ^ 2 

/ c - 2 fc 

(4.9) T2(k) = E Z {?<?(<? " D + ?P<P " l ) } 3 k " p 2 p ^ - 2 , 
7 = 3 p = 7 + 2 

311(1 fc-2 fc 
(4 .10) T3(k) = ^ £ q(<7 - D p ( P " l)3k-p2p-q~2. 

7 = 3 p=q + 2 

With t h e he lp of ( 3 . 1 ) , ( 4 . 3 ) , ( 4 . 4 ) , and (4 .8 ) t o ( 4 . 1 0 ) , we deduce 

Tl(k) = 3T1{k - 1) + kS±(k - 2) 

(4 .11) T2(k) = 3T2(k - 1) + k(k - l)S±(k - 2) + kS2(k - 2) 

T3(k) = 3T3(k - 1) + fc(/c - l)S2(fc - 2 ) . 
Since T1(5) = 15, T2(5) = 90, and T3(5) = 120, these recurrence relations en-
able us, with the help of (4.5) and (4.6), to find T1 (k) , Tz(k) , and T3 (fc) 
numerically, and hence, from (4.7), we can determine T(k) . We can also use 
the recurrence relations to find analytical expressions for the T^ (k),i = 1, 
2, 3. The method is the same in each instance. Therefore, we illustrate it 
by considering T1(k), then stating corresponding results for T2(k) and T$(k). 
The method depends on recognizing that the recurrence relation (4.11) and the 
condition 2^(5) = 15 can be satisfied by taking T1(k) in the form 

(4.12) T^k) = f3(k)3k + f2(k)2k + hW)9 
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where f1(k)9 f2W)> and f3(k) are polynomials in k. It is perhaps worth em-
phasizing that once we have a solution for T1(k) it will be the solution. 
Inspection suggests we write 

(4.13) Tt(k) = aQ3k + (bQ + b1k)2k + e0 + cxk + c2k2. 

From (4.11) and (4.5), we have 

a03k + (b0 + b±k)2k + c0 + exk + o2k2 

= a03k + |(2>0 + bx(k - l))2fe + 3(eQ + ̂ (fc - 1) 

+ e2(k - l))2 + k(2k~2 - k). 

Comparing coefficients, we obtain 

1 3 1 3 3 
^i = " 2 ' ^o = " 2 ' e2 = Y5 Cl = ~29 a n d c° = 2" 

while a0 is indeterminate. To obtain a0 we can proceed in two ways. First, 
we calculate a0 from (4.13) by putting k= 5 and noting that T1(5) = 15. This 
gives aQ = 1/2. Second, we observe that we can regard l\(k) as being defined 
for all k by (4.5), (4.11), and ̂  (5) = 15; thus, determine ^ (0) and so ob-
tain aQ by putting k = 0 in (4.13). This is a somewhat easier procedure to 
carry out computationally than the first. It is readily found that T2 (4) = 
T1(3) = 0, Tx(2) = T1(l) = 1, and T1(0) = 1/2,again giving us a0 = 1/2. So, 

(4.14) ^(fc) = |-3fc - (£ + 3)2fe'1 + |(/<2 + 3 ^ + 3). 

Likewise , we f ind T2(4) = T 2 (3 ) = T 3 (4) = ^ 3 ( 3 ) = 0 , T2(2) = 3 , ^ 2 ( 1 ) = 2 , 
^ ( O ) = 3 / 4 , T3(2) = 2 , ^ 3 ( 1 ) = 1, and T3 (0) = 1 /3 . Assuming a p p r o p r i a t e 
forms fo r T2 (/c) and T3 (k) , we o b t a i n 

? 1 7^^ 97 
(4 .15) T2(k) = ^ 3 k - (2/c2 + 17k + 4 5 ) 2 k ' 2 + k3 + - ~ + ^ + ^ 
and 
(4 .16) T3(k) = i | i 3 f e _ 1 - 7(k 2 + 5k + 12)2f e"2 + ^ - + 2k3 

+ 6/c2 + Ilk + 4 ^ 4 

so that the coefficient of x is 
0fe-7 , 

-yyy {3*_1(6k2 - 63fc + 139) + 2k+1(2k - 7)(k + 6) 

+ 2k2 + Ilk + 39}. 
We note that this last expression vanishes for k = 1, 2,3, and 4. 

We now proceed to find the coefficient of x1 in Q (x) . Since the proce-
dure is similar to that for finding the coefficient of x5

s we merely state 
the essential results. Suffix notation employed in the expression for the 
coefficient of x2t~1 (t _> 3) is not used here; it is sufficient to write the 
coefficient of x' as 

?k-7 

where 
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k-4 k-2 k 

q = 3 p = q + 2 P = P + 2 

r ( r - l ^ ^ - V P - V ' - 2 

Now 

k ^ k ) - k2R2(k) + kR3(k) - i ? , ( k ) . 

i?x(/c) = 4i?1(fc - 1) + kT-^k - 2) 
i?2(k) = 4i?2(k - 1) + k(k - l)T1(k - 2) + kT2(k - 2) 

R3(k) = 4i?3(k - 1) + k(k - l )T 2 (k - 2) + KT3(k - 2) 

^ ( f e ) = 4i?,(k - 1) + k(k - DTg (fe - 2 ) . 
We deduce, with the help of the r e s u l t s for T-(k), 

i?i(0) 1 , i?9(0) ••f, i? 3 (0) 

Again, making appropriate choice of forms, we obtain 

*i(fc) = V ^ — ( k + 4) + 2fc~J(k2 + 5k + 8) 

71* V°> = 
a in 

k3 k2 

6 2 

11 
48 ' 

5k 
6 

i?2(fc) = y 4* - {2k2 + 35^ + 132} + 2*~4{4k3 + 33k2 + 125k + 192} 

R3(k) 

Rh(k) 

1553 4k 
72 

k" 3k3 

2 2 

kjjk2 145k 5_ 
9 9 

4k2 

r} 

27k _ 
4 ^ 

+ 2k~h{2kh + 30k3 + 173k2 

+ 551k + 812} - ~ 3kh 

2 
35k3 57k2 21k - 139 

JL|277 4?, _ 139 3fc-2(fe2 + 7fc + 2 4 ) + 72*-*(k- + 8k3 + 41k2 
432 4 

k*_ _ k^_ _ 8k^ _ 25k3 _ 73k2 
6 2 3 3 4 + 118k + 168) 

947k 
36 

506 
27 

so that the coefficient of x7 is 
,fc-9 

3(k - i): 4
k{2k 42k 2 , 1553k 16277 \ _̂  ^ 

6 36 > + 3k(k + 8) (6k2 - 63k + 139 

+ 32fe_1(2k - 7)(2k2 + 25k + 84) + 2k3 + 27k' 

391k 2024 
3 9 

This expression vanishes when k = 1,2, 3,4, 5, and 6. We could now proceed, 
in a similar manner, to find the coefficient of x and that of higher powers 
in Q(x). It is now evident that the details become increasingly complicated. 
Hence, it is preferable to calculate the coefficient for a given power by 
means of the appropriate recurrence relations. However, using the last of 
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the three results occurring at the end of Section 3, it is possible to de-
duce the coefficient of xk~1 when k is even. The coefficient is 

k L 3(k - 2) 3* 5(fe - 2)(k - 4) 
k - 1\ 2(k - 3) 2 • 4(fc - 3)(& - 5) 

3- 5 - liX - 2)(k - 4)(fe - 6) ) 
2 • 4 • 6(fc - 3)(fc - 5)(k - 7) + " J ' 

the expression within the brackets terminating, since k is even. 
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FIBONACCI RATIO IN A THERMODYNAMICAL CASE 

JEAN-PIERRE GALLINAR 
Departamento de Fisica, Universidad Simon Bolivar, 

Aptdo. 80659, Caracas 108, Venezuela 

Consider the thermodynamics of an infinite chain of alternately spaced 
IE molecules of donors and acceptors (N ->• °°) , and assume there is an average 
of one mobile electron per molecule (as is quite common for some one-dimen-
sional organic crystals [1, 2]). 

® ® ® ® 
FIGURE 1 

Each molecule may contain a maximum of two such electrons and as the 
temperature is raised two electrons may jump onto the same molecule. Because 
electrons repel each other,, it costs an energy UD or UA to put two electrons 
on a molecule type D or type A, respectively5 a common situation is that 

UD » UA. 
Under these conditions, it can cost almost no energy to have sites A doubly 
occupied, while double occupancy of sites D is effectively eliminated. 


