REFERENCES

1. D. E. Knuth. The Art of Computer Progromming I: Fundomental Algorithms. Reading, Mass.: Addison-Wesley, 1968.
2. D. E. Knuth. The Art of Computer Prograrming III: Sorting and Searching. Reading, Mass.: Addison-Wesley, 1973.
3. R. E. Miller, N. Pippenger, A. L. Rosenberg, \& L. Snyder, "Optimal 2,3Trees." SIAM J. Comput. 8 (1979):42-59.
4. A. L. Rosenberg \& L. Snyder. "Minimal-Comparison 2,3 Trees." SIAM J. Comput. 7 (1978):465-480.

> A STUDY OF THE MAXIMAL VALUES IN
> PASCAL'S QUADRINOMIAL TRIANGLE
> CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95112

1. INTRODUCTION

In this paper we search for the generating function of the maximal values in Pascal's quadrinomial triangle. We challenge the reader to find this function as well as a general formula for obtaining all generating functions of the ($H-L$)/k sequences obtained from partition sums in Pascal's quadrinomial triangle.

Generalized Pascal triangles arise from the multinomial coefficients obtained by the expansion of

$$
\left(1+x+x^{2}+\cdots+x^{j-1}\right)^{n}, j \geq 2, n \geq 0,
$$

where n denotes the row in each triangle. For $j=4$, the quadrinomial coefficients produce the following triangle:
$\left.\begin{array}{rrrrrrrrr}1 & & & & & & & & \\ 1 & 1 & 1 & 1 & & & & & \\ 1 & 2 & 3 & 4 & 3 & 2 & 1 & & \\ 1 & 3 & 6 & 10 & 12 & 12 & 10 & 6 & 3\end{array}\right) 1$

The partition sums are defined by

$$
S(n, j, k, r)=\sum_{i=0}^{M}\left[\begin{array}{c}
n \\
r+i k
\end{array}\right]_{j} ; 0 \leq r \leq k-1,
$$

where

$$
M=\left[\frac{(j-1) n-r}{k}\right] ;
$$

the brackets [] denote the greatest integer function. To clarify, we give a numerical example. Consider $S(3,4,5,1)$. This denotes the partition sums in the third row of the quadrinomial triangle, in which every fifth element is added, beginning with the first column. Thus,

$$
S(3,4,5,1)=3+10=13 .
$$

(Conventionally, the column of 1 's at the far left is the 0th column and the top row is the Oth row.)

In the nth row of the j-nomial triangle, the sum of the elements is j^{n}. This is expressed by

$$
S(n, j, k, 0)+S(n, j, k, 1)+\cdots+S(n, j, k, k-1)=j^{n} .
$$

Let

$$
\begin{aligned}
& S(n, j, k, 0)=\left(j^{n}+A_{n}\right) / k \\
& S(n, j, k, 1)=\left(j^{n}+B_{n}\right) / k \ldots \\
& S(n, j, k, k-1)=\left(j^{n}+Z_{n}\right) / k
\end{aligned}
$$

Since $S(0, j, k, 0)=1$,

$$
S(0, j, k, 1)=0 \ldots S(0, j, k, k-1)=0
$$

we can solve for $A_{0}, B_{0}, \ldots, Z_{0}$ to get $A_{0}=k-1, B_{0}=-1, \ldots, Z_{0}=-1$.
Now a departure table can be formed with $A_{0}, B_{0}, \ldots, Z_{0}$ as the 0th row. Pascal's rule of addition is the simplest method for finding the successive rows in each departure table. The departure table for six partitions in the quadrinomial triangle appears below.

TABLE 1. SUMS OF SIX PARTITIONS IN THE QUADRINOMIAL TRIANGLE

5	-1	-1	-1	-1	-1
2	2	2	2	-4	-4
-4	-4	2	8	2	-4
2	-10	-10	2	8	8
20	8	-10	-16	-10	8

In particular, the $(H-L) / k$ sequences defined as the difference of the maximum and minimum value sequences in a departure table, divided by k partitions will be of prime importance. Table 2 is a table of the ($H-L$) /k sequences for $k=5$ to $k=15$ partitions.

TABLE 2. ($H-L$) $/ k$ SEQUENCES FOR $k=5$ TO $k=15$

$k=5$	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1
1	3	3	4	4	4	4	4	4	4	4
1	6	6	8	10	11	12	12	12	12	12
1	9	14	24	30	36	39	42	43	44	44
1	18	31	56	85	105	125	135	145	149	153
1	27	70	160	246	340	404	468	503	538	553

The primary purpose of this paper is to share the progress that has been made toward finding a generating function for the maximal values in Pascal's quadrinomial triangle. The generating functions for the maximal values in
the binomial and trinomial triangles are known. In the February 1979 issue of The Fibonacci Quarterly, we showed that the limit of the generating functions for the $(H-L) / k$ sequences was precisely the generating function for the maximal values in the rows of the binomial and trinomial triangles. We would like to establish this for the quadrinomial triangle as well.

2. GENERATING FUNCTIONS OF THE ($H-L$) /k SEQUENCES
 IN THE QUADRINOMIAL TRIANGLE

As k increases, one sees the $(H-L) / k$ sequences obtain more of the values of the sequence of central (maximal) values in the quadrinomial triangle. For $k=14$, we observe from Table 2 that the ($H-L$)/ 14 sequence contains the first five values. We examined all even values of k, up to $k=52$. The ($H-L$) $/ 50$ sequence has its first 17 values coinciding with the central values in the quadrinomial triangle. The ($H-L$)/50 sequence is

```
1, 1, 4, 12, 44, 155, 580, 2128, 8092, 30276, 116304,
440484, 1703636, 6506786, 25288120, 97181760, 379061020,
1463609338... .
```

We observed that $k=3 m+2$ has $m+1$ of the central values in the quadrinomial triang1e.

In an attempt to discover a pattern for predicting all recurrence relations of the $(H-L) / k$ sequences, we examined the recurrence relations for the even partitions up to $k=48$. These equations are displayed in Table 3 .

As the reader can see, the size (both degree and coefficient) of the equations grows rapidly. For example, in finding the recurrence equation in the case with 48 partitions, we used the first 30 elements in the ($H-L$)/48 sequence. The last element has 17 digits, too large for accuracy in most computers and calculators; thus, much computation was done by hand using the pivotal element method. Even after examining so many cases, we were unable to derive a general formula for predicting successive recurrence equations. However, we discovered several patterns that enabled us to make accurate conjectures about most of the coefficients and the degree of the recurrence equation.

We predict that for $N=8 m, 8 m+2$, or $8 m+4$, the degree of the recurrence equation is $4 m$. For $N=8 m+6$, the degree is $4 m+2$.

The first coefficient is 1 .
The second coefficient we predict to have the form $-N$ for $N \geq 8$. A difference of 2 is observed between successive elements in the sequence of all second coefficients for even partitions.

The third coefficient we predict to have the form $\frac{1}{2} N(N-11)$ for $N \geq 14$. A second difference of 4 is observed between successive elements in the sequence of third coefficients for even partitions. We show this below:

The fourth coefficient can be found by making a table of third differences between successive elements in the sequence of fourth coefficients for even partitions. This appears to be valid for $N \geq 20$. The third difference is 8. We show this below:

TABLE 3. RECURRENCE EQUATIONS FOR $(H-L) / k$ SEQUENCES FOR EVEN PARTITIONS IN THE QUADRINOMIAL TRIANGLE

N	Recurrence Equation
4	$x-1=0$
6	$x^{2}-3=0$
8	$x^{4}-8 x^{2}+8=0$
10	$x^{4}-10 x^{2}+5=0$
12	$x^{4}-12 x^{2}+9=0$
14	$x^{6}-14 x^{4}+21 x^{2}-7=0$
16	$x^{8}-16 x^{6}+40 x^{4}-32 x^{2}+8=0$
18	$x^{8}-18 x^{6}+63 x^{4}-57 x^{2}+9=0$
20	$x^{8}-20 x^{6}+90 x^{4}-100 x^{2}+25=0$
22	$x^{10}-22 x^{8}+121 x^{6}-176 x^{4}+88 x^{2}-11=0$
24	$x^{12}-24 x^{10}+156 x^{8}-296 x^{6}+225 x^{4}-72 x^{2}+8=0$
26	$x^{12}-26 x^{10}+195 x^{8}-468 x^{6}+455 x^{4}-169 x^{2}+13=0$
28	$x^{12}-28 x^{10}+238 x^{8}-700 x^{6}+833 x^{4}-392 x^{2}+49=0$
30	$x^{14}-30 x^{12}+285 x-1000 x+1440 x-903 x+230 x^{2}-15=0$
32	$\begin{aligned} x^{16} & -32 x^{14}+336 x^{12}-1376 x^{10}+2376 x^{8}-1920 x^{6}+736 x^{4}-128 x^{2} \\ & +8=0 \end{aligned}$
34	$\begin{aligned} x^{16} & -34 x^{14}+391 x^{12}-1836 x^{10}+3757 x^{8}-3740 x^{6}+1819 x^{4}-374 x^{2} \\ & +17=0 \end{aligned}$
36	$\begin{aligned} x^{16} & -36 x^{14}+450 x^{12}-2388 x^{10}+5715 x^{8}-6804 x^{6}+4059 x^{4}-1080 x^{2} \\ & +81=0 \end{aligned}$
38	$\begin{aligned} x^{18} & -38 x^{16}+613 x^{14}-3040 x^{12}+8398 x^{10}-11742 x^{8}+8512 x^{6}-3059 x^{4} \\ & +475 x^{2}-19=0 \end{aligned}$
40	$\begin{aligned} x^{20} & -40 x^{18}+580 x^{16}-3800 x^{14}+11970 x^{12}-19408 x^{10}+16860 x^{8} \\ & -7800 x^{6}+1825 x^{4}-200 x^{2}+8=0 \end{aligned}$
42	$\begin{aligned} x^{20} & -42 x^{18}+651 x^{16}-4676 x^{14}+16611 x^{12}-30912 x^{10}+31647 x^{8} \\ & -17937 x^{6}+5334 x^{4}-700 x^{2}+21=0 \end{aligned}$
44	$\begin{aligned} x^{20} & -44 x^{18}+726 x^{16}-5676 x^{14}+22517 x^{12}-47652 x^{10}+56628 x^{8} \\ & -38236 x^{6}+14036 x^{4}-2420 x^{2}+121=0 \end{aligned}$
46	$\begin{aligned} x^{22} & -46 x^{20}+805 x^{18}-6808 x^{16}+29900 x^{14}-71346 x^{12}+97198 x^{10} \\ & -76912 x^{8}+34500 x^{6}-8119 x^{4}+851 x^{2}-23=0 \end{aligned}$
48	$\begin{aligned} x^{24} & -48 x^{22}+888 x^{20}-8080 x^{18}+38988 x^{16}-104064 x^{14}+160888 x^{12} \\ & -147360 x^{10}+79329 x^{8}-24080 x^{6}+3816 x^{4}-288 x^{2}+8=0 \end{aligned}$

268 A STUDY OF THE MAXIMAL VALUES IN PASCAL'S QUADRINOMIAL TRIANGLE [Oct.

The fifth coefficient can be found by making a table of fourth differences between successive elements in the sequence of fifth coefficients for even partitions. This appears to be valid for $N \geq 26$. The fourth difference is 16. See Table 4.

TABLE 4. PREDICTING 5th, 6th, AND 7th COEFFICIENTS

3. GENERATING FUNCTIONS OF THE ($H-L$) $/ k$ SEQUENCES

IN A MULTINOMIAL TRIANGLE
We challenge the reader to finish this problem: to find the generating functions of the $(H-L) / k$ sequences for $a 11 k$ in the quadrinomial triangle. Then perhaps we could find the generating function of maximal values in Pascal's quadrinomial triangle, and show that the limits of the ($H-L$)/k generating functions are precisely the generating function of maximal values.

This problem can be extended to examine the maximal values in Pascal's pentanomial triangle and larger multinomial triangles. Again, the pursuer of such an adventure will encounter numbers with up to 20 digits, in which the accuracy of each digit matters in order to find recurrence equations.

REFERENCES

1. John L. Brown, Jr., \& V. E. Hoggatt, Jr. "A Primer for the Fibonacci Numbers, Part XVI: The Central Column Sequence." The Fibonacci Quarterly 16, No. 1 (1978):41.
2. Michel Y. Rondeau. 'The Generating Functions for the Vertical Columns of ($N+1$-Nomial Triangles." Master's thesis, San Jose State University, San Jose, California, December 1973.
3. Claudia Smith \& V. E. Hoggatt, Jr. "Generating Functions of Central Values in Generalized Pascal Triangles." The Fibonacei Quarterly 17, No. 1 (1979):58.
4. Claudia R. Smith. "Sums of Partition Sets in the Rows of Generalized Pascal's Triangles." Master's thesis, San Jose State University, San Jose, California, May 1978.

3

THE STUDY OF POSITIVE INTEGERS (a, b)
SUCH THAT $a b+1$ IS A SQUARE
PETER HEICHELHEIM
Peat Marwick and Partners, Toronto, Ontario, Canada

1. INTRODUCTION

A P-set will be defined as a set of positive integers such that if α and b are two distinct elements of this set, $a b+1$ is a square.

There are many examples of P-sets such as [2, 12] or $[1,3,8,120]$ and even formulas such as

$$
\left[n-1, n+1,4 n, 4 n\left(4 n^{2}-1\right)\right]
$$

or

$$
\begin{aligned}
{\left[m, n^{2}-1\right.} & +(m-1)(n-1)^{2}, n(m n+2), 4 m\left(m n^{2}-m n+2 n-1\right)^{2} \\
& \left.+4\left(m n^{2}-m n+2 n-1\right)\right]
\end{aligned}
$$

(See Cross [1].) However, none of these formulas are general.
More recently, there has been considerable work on P-sets with polynomials (by Jones [2, 3]) and in connection with Fibonacci numbers (by Hoggatt and Bergum [4]).

It is of interest to find out how much these sets can be extended by adding new positive integers to the set; for example $[2,12]$ can be extended to [2, 12, 420]. A P-set which cannot be extended will be called nonextendible. One purpose of this article is to show that a nonextendible set must have at least four members. Then it will be demonstrated that the number of members of a P-set is finite. Finally, it will be shown that certain types of five-member P-sets will be impossible.

2. EXTENDING P-SETS TO FOUR ELEMENTS

The proof that sets of one or two elements are extendible is very simple, for [N] can always be extended to $[N, N+2$] and [α, \bar{b}] can be extended to $[a, b, a+b+2 x]$ where $x^{2}=a b+1$. (See Euler [5].)

Let $[a, b, N]$ be members of a P-set. Then,

$$
\begin{equation*}
a b+1=x^{2} \tag{1}
\end{equation*}
$$

(2) $a N+1=y^{2}$,
(3) $\quad b N+1=z^{2}$.

