ABSORPTION SEQUENCES

FREDERICK STERN
San Jose State University, San Jose, CA 95192

1. INTRODUCTION

In the classical gambler's ruin problem, a gambler beginning with < dol-
lars, either wins or loses one dollar each play. The game ends when he has
lost all his initial money or has accumulated a(> ) dollars. The situation
can also be described as a simple random walk on the integers beginning at
with absorbing barriers at 0 and a. Let F,(Z,n) represent the number of dif-
ferent paths of exactly »n steps which begin at ©7 (¢ = 0,1, 2, ..., a) and end
with absorption at either 0 or a. TFor fixed values of a and Z, F,(Z,n) is a
sequence of nonnegative integers called an "absorption sequence." 1In other
words,‘F@(i,n) represents the number of different ways a gambler who begins
with 7 dollars can end his play using 7 one dollar bets.

2. A RECURRENCE RELATION WITH BOUNDARY CONDITIONS

Appropriate boundary conditions, suggested by the condition that the
random walk stops when it first hits either 0 or a are

F,(0,0) = F,(a,0) 1
F,(750) =0, 2=1, 2, ..., a-1
F,(0,n) = F,(a,n) =0, n 0.

I

A path which begins at 0 < 2 < ¢ must in one step go to either ¢-1 or <+ 1.
For this reason, we have a recurrence relation for the number of paths:

F,(i,n) =F, (¢ -1m~-1) +F, (it +1,m=-1),n>0, 0<7<a.
3. EXAMPLES OF RECURRENCE RELATIONS AND ABSORPTION SEQUENCES

TABLE 1. Fg(<,n)

N o 1 2 3 4 5 6 7 8 9 10 11 12
5 1 o o o OO o0 O0o 0O ©O0O 0 0 0 o0
4 o 1 o 1 1 2 3 5 8 13 21 34 55
3 o o 1 1 2 3 5 8 13 21 34 55 89
2 o o 1 1 2 3 5 8 13 21 34 55 89
1 o 1 o 1 1 2 3 5 8 13 21 34 55
0 1 o o o ©Oo O O0O OoO O 0 0 0 0

The entries in each row are the beginning of an absorption sequence.
Absorption at 0 or 5.
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TABLE 2. Fq(i,n)
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8 9 10 11 12

0 0 0 0 0
1 14 7 42 34
14 7 42 34 132
6 28 27 90 109
14 20 48 75 165
14 20 48 75 165
6 28 27 90 109
14 7 42 34 132
1 14 7 42 34
0 0 0 0 0
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The entries in eqch row are the beginning of an absorption sequence.
Absorption at 0 or 9.

(@) Fy(l,m) = F3(2,m) = 1, n > 0.

() F,(1,2m) =0, F,(1,2m + 1).= 2", m > 0;
F,(2,2m) = 2", m > 0, F,(2,2m + 1) = 0, m > 0.

Il

(c) Let F, represent the well-known Fibonacci number sequence [1]:
Fy =1, F, =1, o, Fypy =F, +F,_
in general. We have
Fe(lym + 2) = Fe(2,m + 1) = F, (see Table 1)
Fe(l,n) = Fg(4,n), Fg(2,n) = F(3,n)
by symmetry.

By enumerating, see Table 1, it is easy to show that (assuming a = 5 and
omitting the subscript)

F(2,2) = F(2,3) =1
F(2,n + 1)

F(l,n) + F(3,n) (recurrence relation)

]

F(l,n) + F(2,n) (symmetry)

F(2,m - 1) + F(2,n) (boundary condition
for n > 1).

The sequence F(2,n) thus satisfies the initial conditions and recurrence re-
lation for the Fibonacci numbers. In the case of F3(l,n), the argument is
similar.

(d) Fq(1,2m) 0, F6(1,2m + 1) =3 »m>1, and F(1,1) = 1;
Fo(2,2m) =3" "% m> 1, Fo(2,2m + 1) = 0;
Fe(3,2m) =0, F,(3,2n + 1) =2 = 3”75, m > 1, and F,(3,1) = 0.

m-1

fi

1]
o



1979]

(e) Let a = 9 and omit the subscript.

ABSORPTION SEQUENCES

F(1,1) =1, F(L,2) =0, F(1,3) =1

and

F(l,nm) = 3F(l,m - 2) + F(l,m - 3) -1, n > 3.
F(2,1) =0, F(2,2) =1, F(2,3) =0

and

F(2,n) =3F2,nm -2) +FQ2,;m -3) -1, n> 3.

F(3,1) =0, F(3,2) =0, F(3,3) =1

and

F(3,n) = 3F(3,n - 2) + F(3,m - 3), n > 3.

F(4,1) =0, F(4,2) =0, F(4,3) =0

and

F(4ym) = 3Fb,n - 2) + F(b,m - 3) +1, n > 3.

F(9 - 2,n) = F(i,n)

By enumeration, see
as well as the fact that

F(l1,4) =0,

The recurrence relations
assume they all hold for

F(l,n + 1)

[for 2 > 0, F(0,2) = 0.]
F(2,m + 1)

by symmetry.
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Table 2, the initial conditions can be seen to hold
(assuming a

9 and omitting the subscript)

F(2,4) =2, F(3,4) =0, and F(4,4) = 1.

therefore hold if n = 4.

a

It

]

general value of n.

F(O,m) + F(2,m) = F(2,n)

3F(2,m - 2) +F(2,m - 3) -1

(the induction
hypothesis)

3F(l,m = 1) +F(l,;m - 2) =1
Similarly,
= F(l,n) + F(3,n)

=3[F(l,n - 2) + FQ3,m - 2)] + F(l,n - 3)

+ F(3,m» = 3) = 1 (the induction
hypothesis)

=3FQ2,;m -1) +FQ2,n - 2) - 1.

In just the same way, it is easy to show that both F(3,n + 1) and F(4,n + 1)
satisfy, respectively, the stated recurrence relation.

(f) Assume g = 10 and omit the subscript.
F(1,2m) = 0, F(1,1) =1, F(1,3) =1, and

m-1

F(l,2m + 1) = 4P(L,2m - 1) = 3 F(1,2k = 1) = 1, m > 1.

k=1

F(2,2m - 1) =0, m>1, F(2,2) =1, F(2,4) =2, and

F(2,2m + 2)

m-1

k=1

4F(2,2m) - Z F(2,2k) - 2.

For an induction argument
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F(3,2m) = 0, m> 0, F(3,1) =0, F(3,3) =1, and

m-1
4F(3,2m - 1) ~ 2: F(3,2k = 1) -~ 1, m > 1.

F(3,2m + 1) =
k=1
F(h,2m + 1) =0, m > 0, F(4,2) = 0, F(4,4) =1, and
m~-1
Fb,2m + 2) = 4F(4,2m) - Y F(4,2k) + 1.
k=1
F(5,2m) =0, m > 0, F(5,1) = 0, F(5,3) = 0, and
m~1
F(5,2m + 1) = 4F(5,2m - 1) - }: F(5,2k - 1) + 2.
k=1

Fo,0 -<,m) =F (Gm), ¢ =1, 2, 3, 4, by symmetry.

In the manner shown in example (e), all of these statements can be veri-
fied easily. Because of their length and repetitive nature, this discussion
is omitted.

A referee has noted that if 4 = (aij) is the square matrix of order a
defined by aq;; = 1 if |¢ - j| =1, ¢ # 1, © # a; a;; = 0 otherwise, then the
nth column X, in the array of absorption sequences is given by

A"X, = X, where X, = (1, 0,0, ..., 0, 1)7.

"

This approach, as 1t has been applied to the related problem of counting
paths in reflections in glass plates [2], might be used to codify and expand
many of the current results. The referee has also made a (apparently cor-
rect) conjecture: 1if p is a prime and a = 2p, then p divides sz(i,n) for
n>((@+1) and 0 < 1 < 2p.

L. RESULTS FOR SEQUENCES USING PROBABILISTIC REASONING

To illustrate what vresults follow from the connection between absorp-
tion sequences and probability, let us use the Fibonacci number sequence, 7,
which appears in example 3(c). Similar results can be found for any absorp-
tion sequence.

(a) The probability that absorption at one of the boundaries will take place
is one [2, p. 345]. 1In the case where zero and five are the boundaries,
Fg(2,n) represents the number of paths that begin at two, and end at zero or
five in n steps. If a "win" or a "loss" is equally likely, then the proba-
bility that the game is over in »n steps is 2'”F5(2,n). Hence,

©

D277 (2m) =1 or Y. 27"F, = 1.
n=1

n=2

(b) The expected duration of play in the equally 1likely case is given, in
general, by the formula <(a - Z) [2, p. 349]. It is also given in this exam-
ple by

2:712'”F5(2,n)
n=2

from the definition of expected value. We have then, with ¢ = 5 and 7 = 2,
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that for the Fibonacci sequence

an'”Fn_f 6.
n=2

(c) 1In a formula attributed to Lagrange [2, p. 353] for the equally likely
case with absorptions at 0 or 5, the probability of ruin (or absorption at
zero) on the nth step is given as

L .
. 1 Tyttt v iy
u(i,n) = 5 E cos — sin — sin —/—

e 5 5 5
=1, 2, 3, 4, and n > 0.
In this formula, if (n - Z) is odd, u(Z,n) = 0, as seems logical in terms of

the random walk formulation as well as in light of trigonometric identities.
If n - 7) is even,

u(i,n) = g[(cos l>n_l sin T sin 2E + <cos E>n_l sin 2V sin Zﬁ]
’ 5 5 5 5 5 5 5 1
Since, furthermore, each path of length n has probability 27", the number of
paths of length 7 involved is 2"u(Z,n). In particular, if ¢ = 3, n = 2m + 1,
then 22m+lu(3,2m + 1), which, as shown above, is the Fibonacci number F,,.
We obtain a trigonometric representation for "one-half'" the Fibonacci num-
bers:

F =22m+2 osﬂzm inﬂ in-?J—ﬂ-+ cosy—rzm sin—zlsinﬂ
2m 5 cos5) 8 sin g 5 5 5|0

m=1, 2, 3,

To use Lagrange's probability of ruin formula for the rest of the Fibonacci
numbers, the number of paths that begin at 2 and are absorbed at 0 in 2m
steps for m > 0 is, as indicated above, F(2,2m) or F,, ;. Therefore, we have
22™u(2,2m) = F,,_ ;1 or

P2 TN T g 2T m\EFTE 2w 4T
2m-1 =~ 5 cos ¢ sin ¢ sin 5 cos % n = 5 |

m=1, 2, 3,

Using trigonometric identities, these two formulas combine into one new trig-
onometric representation of the Fibonacci numbers.

cosﬂnsinﬂsinéﬂ+ —cos—zﬂnsinz—ﬂsinél n >0
5 5 5 5 5 5 2 :

2n+2

Fn=5

(d) By using the method of images, repeatedly reflecting the path from the
end points [2, p. 96], it is possible to show that in the random walk begin-
ning at 3 with absorption at 0 or 5, the number of paths that arrive at 1 in
(n - 1) steps hitting neither 0 nor 5 is given by

n-1 n-1
Z!:<n+10k+l> _<n+107<+3)
- 2 2

where the sum extends over the positive and negative integers k with the con-

vention that the "binomial coefficient" (x) is zero whenever x does not equal
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an integer between 0 and »n. (This sum has a finite number of n n-zero terms.)
With n = 2m + 1, it follows that the number of paths which are absorbed at 0
in 2m + 1 steps is

B _ 2m _ 2m
F3,2m + 1) = F,, = ;[(m + 5k + 1) <m + 5k + 2)]

To obtain the "other half" of the Fibonacci numbers, we count
Fon_1 = F(2,2m),

the number of paths that begin at 2 and are absorbed at 0 in 2m steps. The
method of repeated reflections gives us

- -1\ _( 2m-1
Fom-1 = Z}(:[(m + 5k) <m + 5k + l>]

the sum extending over all positive and negative integers.
Two slightly different representations of the Fibonacci numbers can now
be obtained through use of the easily verified relations

<' 2m )_( 2m )_10k+3< 2m+l>
m+ 5k + 1 m+ 5k +2) 2m+ 1\m+ 5k + 2

(2m—1>_< 2m—l>_5k+l< - 2m
m + 5k m+ S5k +1  m \m+ 5k+1
where X is any integer, m is a positive integer, and the conventions for the

binomial coefficients introduced above continue to apply. By direct substi-
tution, we obtain

< 10k +3( w4+ 1 S5k + 1 2m
Fom = - 2m + 1 (m + 5k + 2) and F,, , _'Z; m (m + 5k + 1)'

Finally, by treating the terms with positive k separately from those with
negative k, we obtain

and

! - om + 1 2 2m + 1 >
FZ'”“2m+1{;0(1()k+3)<m+5k+2)'7;(107‘"3)<m+5k—1}’
r t
1 2m 2m
Fom+a =77{k§%(5k * U(m + 5k + 1> - kz 5k - D(m + 5k - 1>}’
Z -1

m -1 m+ 2 m+ 1
Sl Il (el el S A
with [ ] the greatest integer in x, and the convention that a sum is zero if
its lower limit exceeds its upper limit.
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