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1. INTRODUCTION 

In the classical gamblerfs ruin problem,a gambler beginning with i dol-
lars, either wins or loses one dollar each play. The game ends when he has 
lost all his initial money or has accumulated a(_> i) dollars. The situation 
can also be described as a simple random walk on the integers beginning at 
with absorbing barriers at 0 and a. Let Fa (i ,n) represent the number of dif-
ferent paths of exactly n steps which begin at t (i = 0,1, 2, ...,a) and end 
with absorption at either 0 or a. For fixed values of a and i , Fa(i,n) is a 
sequence of nonnegative integers called an "absorption sequence." In other 
words, Fa(^,n) represents the number of different ways a gambler who begins 
with i dollars can end his play using n one dollar bets. 

2. A RECURRENCE RELATION WITH BOUNDARY CONDITIONS 

Appropriate boundary conditions, suggested by the condition that the 
random walk stops when it first hits either 0 or a are 

Fa(0,0) = Fa(a,0) = 1 

Fa (z,0) = 0, i = 1, 2, ..., a - 1 

Fa (0,n) = Fa (a,n) = 0, n 0. 

A path which begins at 0 < i < a must in one step go to either t - 1 or i+ 1. 
For this reason, we have a recurrence relation for the number of paths: 

Fa (i,n) = Fa (i - I ,n - 1) + Fa (i + l,n - 1) , n > 0, 0 < i < a. 

3. EXAMPLES OF RECURRENCE RELATIONS AND ABSORPTION SEQUENCES 

TABLE 1. F5(i,n) 
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The entries in each row are the beginning of an absorption sequence. 
Absorption at 0 or 5. 
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TABLE 2. F9(i,n) 
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27 
42 
7 
0 

11 

0 
42 
34 
90 
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75 
90 
34 
42 
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0 
34 
132 
109 
165 
165 
109 
132 
34 
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The entries in egch row are the beginning of an absorption seguence. 
Absorption at 0 or 9. 

(a) F3(l,n) = F3(2sn) = ls n > 0. 

(b) F^(l92m) = 0, Fh(l,2m + 1).= 2m, m >_ 0; 

F^(2,2m) = 2m, m > 0, Fh(292m + 1 ) = 0 , w > 0 . 

(c) Let Fn represent the well-known Fibonacci number sequence [1]: 

F F„ + F„ Fx = 1, F2 = 1, 

in general. We have 

F5(l,n + 2) = F5(2,n + 1 ) = Fn (see Table 1) 

F5(l,n) =F5(4,n), F5(2,n) =F5(3,n) 

by symmetry. 

By enumerating, see Table 1, it is easy to show that (assuming a = 5 and 
omitting the subscript) 

F(2,2) = F(253) = 1 

F(29n + 1) = F(l,ri) + F(3,n) (recurrence relation) 

= F(l,n) + F(2,n) (symmetry) 

= F(2,n - 1) + F(2,n) (boundary condition 
for n > 1). 

The sequence F(2,n) thus satisfies the initial conditions and recurrence re-
lation for the Fibonacci numbers. In the case of F3(l,n), the argument is 
similar. 

(d) F6(l,2m) = 0, F6(l92m + 1) = 3m_1, TTZ >. 1, and F6(l,l) = 1; 

FA2,2m) = 3 m"\ ro .> 1, F,(2,2m + 1) = 0; 

F6(3,2m) = 0, F6(392m + 1) = 2 • 3 m"\ m .> 1, and FG(3,1) 0. 
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(e) Let a = 9 and omit the subscript. 

F(l,l) = 1, ni,2) = 0, F(l,3) = 1 
and 

and 

and 

and 

F{l9n) = 3F(l,n - 2) + F(l9n - 3) - 1, n > 3. 

F(2,l) = 0, F(2,2) = 1, ̂ (2,3) = 0 

F(29n) = 3^(2,n - 2) + F(29n - 3) - 1, n > 3. 

F(3,l) = 05 F(3,2) = 0, F(3,3) = 1 

F(39n) = 3F(39n - 2) + F(39n - 3), n > 3. 

F(4,l) = 05 F(4,2) = 0, F(4,3) = 0 

F(4,n) = 3F(4,n - 2) + F(4,n - 3) + 1, n > 3. 

F(9 - i 9n) = F(v9ri) by symmetry. 

By enumeration, see Table 2, the initial conditions can be seen to hold 
as well as the fact that (assuming a = 9 and omitting the subscript) 

F(l,4) = 0, F(2,4) = 2, F(3,4) = 0, and F(4,4) = 1. 

The recurrence relations therefore hold if n = 4 . For an induction argument 
assume they all hold for a general value of n. 

F(l,n + 1) = F(0,n) + F(2,n) = F(29n) 

= 3F(2,n - 2) + £(2,ra - 3) - 1 
(the induction 
hypothesis) 

= 3F(l,n - 1) + F(l9n - 2) - 1 

[for i > 0, F(09i) = 0.] Similarly, 

F(29n + 1) = F(l9n) + F(39n) 

= 3[F(l,n - 2) + F(3,n - 2)] + F(l9n - 3) 

+ F{39n - 3) - 1 (the induction 
hypothesis) , 

= 3F(2,n - 1) + F{29n - 2) - 1. 

In just the same way, it is easy to show that both F(39n + 1) and F(b9n + 1) 
satisfy, respectively, the stated recurrence relation. 

(f) Assume a = 10 and omit the subscript. 

F(l92m) = 0, F(l,l) = 1, F(l,3) = 1, and 
m-l 

F(l92m + 1) = 4F(l,2m - 1) - ]T F(l,2k - 1) - 1, TTZ > 1. 
fc = i 

F(2,2/7? - 1 ) = 0 , w > l , F(292) = 1, ̂ (2,4) = 2, and 

77? - 1 

F(292m + 2) = 4F(2,2w) - ]T F(292k) - 2. 
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F(3,2m) = 0 , m> 0 , F ( 3 , l ) = 0 , F (3 ,3 ) = 1, and 
m - 1 

F(3,2m + 1) = W(3,2m - 1) - ^ F(3,2k - 1) - 1, m > 1. 
fc = i 

F(4,2TT? + 1 ) = 0, m >_ 0 , F ( 4 , 2 ) = 0 , F ( 4 , 4 ) = 1, and 
m - l 

F(h,2m + 2) = 4F(4,2m) - ] T F (4 ,2k ) + 1. 
fc = i 

F(5,2m) = 0 , m >. 0, F ( 5 , l ) = 0, F ( 5 , 3 ) = 0, and 

m-l 
F(592m + 1) = UF(592m - 1) - ^ F ( 5 , 2 ^ c - 1) + 2. 

fc = i 

F1Q(10 - i9n) = F1Q(i,n)9 i = 1, 2, 3, 4, by symmetry. 

In the manner shown in example (e) 5 all of these statements can be veri-
fied easily. Because of their length and repetitive nature, this discussion 
is omitted. 

A referee has noted that if A = (ciij) is the square matrix of order a 
defined by a^- = 1 if j i - J | = 1, i ^ 1, £ ̂  a; a^j = 0 otherwise, then the 
nth column Xn in the array of absorption sequences is given by 

AnXQ = Xn where XQ = (1, 0, 0, ..., 0, l)T. 

This approach, as it has been applied to the related problem of counting 
paths in reflections in glass plates [2], might be used to codify and expand 
many of the current results. The referee has also made a (apparently cor-
rect) conjecture: if p is a prime and a - 2p, then p divides F2 (i 9ri) for 
n > (p + 1) and 0 <. 1 <. 2p. 

4. RESULTS FOR SEQUENCES USING PROBABILISTIC REASONING 

To illustrate what results follow from the connection between absorp-
tion sequences and probability,let us use the Fibonacci number sequence, Fn , 
which appears in example 3(c). Similar results can be found for any absorp-
tion sequence. 

(a) The probability that absorption at one of the boundaries will take place 
is one [2, p. 345]. In the case where zero and five are the boundaries, 
F5(29n) represents the number of paths that begin at two, and end at zero or 
five in n steps. If a "win" or a "loss" is equally likely, then the proba-
bility that the game is over in n steps is 2~nF5 (2,n). Hence, 

£ 2 - " ^ (2,n) = 1 or 22"n*'»-i " U 

n = 2 

(b) The expected duration of play in the equally likely case is given, in 
general, by the formula i(a - i) [2, p. 349]. It is also given in this exam-
ple by 

]Tn2-nF5 (2,n) 
n = 2 

from the definition of expected value. We have then, with a - 5 and i = 2, 
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that for the Fibonacci sequence 

n = 2 

n2~nFv, 6." 

(c) In a formula attributed to Lagrange [2, p. 353] for the equally likely-
case with absorptions at 0 or 5, the probability of ruin (or absorption at 
zero) on the nth step is given as 

u(i9n) 
4 

1 T^ / TTVY*"1 . TTV . l\iv 

"5 Z-r Vcos T ) s=Ln T Sln ~T~ 
i = 1, 2, 3, 4, and ft > 0. 

In this formula, if (ft - i) is odd, u(i9n) = 0, as seems logical in terms of 
the random walk formulation as well as in light of trigonometric identities. 
If (n - %) is even, 

u(i,n) = — / TTV*-1 . TT . ni , / 27T\n_1 . 2TT . 2ni (cos — j sin — s m — — h Icos -r-l s m -r- s m -

Since, furthermore, each path of length n has probability 2~n, the number of 
paths of length n involved is 2nu(i,n). In particular, ifi = 3, n = 2772 + 1, 
then 2 u(392m + 1), which, as shown above, is the Fibonacci number F2m • 
We obtain a trigonometric representation for "one-half" the Fibonacci num-
bers : 

TT . 3TT , s m — s i n -z—h ?) 
777 

2TT 

1, 2 , 3 , 

Srr 
5 J ' 

To use LagrangeTs probability of ruin formula for the rest of the Fibonacci 
numbers, the number of paths that begin at 2 and are absorbed at 0 in 2m 
steps for 777 > 0 is, as indicated above, F(2,2m) or F2m_1. Therefore, we have 

?2m-l Or 
>2m + l 

22mu(2,2777) ?2 

• Z m - l 

71" 
COS T 

2m-l TT . 2TT , 

sm T- sm -=—h cos 
2TT 2 7 7 7 - 1 . 2TT . 4TT 

s m -£- s m ~r~ 

m = 1, 2, 3, 
Using trigonometric identities, these two formulas combine into one new trig-
onometric representation of the Fibonacci numbers. 

F„ 
TT . 3TT , / 2TT 

s m — s i n "T—I- (-cos ~r~ 
2TT . 6TT . n 

s m -=- s m — , n > 0. 
(d) By using the method of images, repeatedly reflecting the path from the 
end points [2, p. 96], it is possible to show that in the random walk begin-
ning at 3 with absorption at 0 or 5, the number of paths that arrive at 1 in 
(n ~ 1) steps hitting neither 0 nor 5 is given by 

ft - 1 \ / ft - 1 N 
ft + 10k + 1 l In + 10k + 3 V 

Is I \ 2 / \ 2 

where the sum extends over the positive and negative integers k with the con-

vention that the "binomial coefficient" I ) is zero whenever x does not equal 
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an integer between 0 and n. (This sum has a finite number of n n-zero terms.) 
With n - 2m + 1, it follows that the number of paths which are absorbed at 0 
in 2m + 1 steps is 

F(3,2m + 1) = F2m = J2 2m 
m + 5k + 1 

2m 
m + 5k + 2 

To obtain the "other half" of the Fibonacci numbers, we count 

2m- 1 F(2,2m), 

the number of paths that begin at 2 and are absorbed at 0 in 2m steps. The 
method of repeated reflections gives us 

2m- 1 E 2m - 1 
m + 5k 

2m - 1 
m + 5k + 1 

the sum extending over all positive and negative integers. 
Two slightly different representations of the Fibonacci numbers can now 

be obtained through use of the easily verified relations 

2m \ _ I 2m \ _ 10k + 3/ 
\m + 5k + 1/ \m + 5fc + 2 

and 

2w + 1 
2m + 1 VT? + 5k + 2 

+ 5k) 
2m - 1 

m + 5k + 1 
5/c + 1/ . 2m 

72 \77Z + 5/C + 1 

where /c is any integer, m is a positive integer, and the conventions for the 
binomial coefficients introduced above continue to apply. By direct substi-
tution, we obtain 

10k + 3 / 2m + 1 
Km + 5k + 2, E 2m + 1 and Fn .,=E 5k + 1 / 2m 

,m + 5& + 1 
fc "" " ~ x "" " "' k 

Finally, by treating the terms with positive k separately from those with 
negative k9 we obtain 

2m 

Fim + i = ~< Yj(5k + 1) 
k = 0 

E < « -2m 
m + 5k + 1 

fe = i 

2m 
m + 5k 

[m - ll [m + 2"I , fm + ll 

with [ ] the greatest integer in x9 and the convention that a sum is zero if 
its lower limit exceeds its upper limit. 
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