ABSORPTION SEQUENCES

FREDERICK STERN

San Jose State University, San Jose, CA 95192

1. INTRODUCTION

In the classical gambler's ruin problem, a gambler beginning with i dollars, either wins or loses one dollar each play. The game ends when he has lost all his initial money or has accumulated $\alpha(\geq i)$ dollars. The situation can also be described as a simple random walk on the integers beginning at with absorbing barriers at 0 and a. Let $F_{a}(i, n)$ represent the number of different paths of exactly n steps which begin at $i(i=0,1,2, \ldots, \alpha$) and end with absorption at either 0 or a. For fixed values of a and $i, F_{a}(i, n)$ is a sequence of nonnegative integers called an "absorption sequence." In other words, $F_{a}(i, n)$ represents the number of different ways a gambler who begins with i dollars can end his play using n one dollar bets.

2. A RECURRENCE RELATION WITH BOUNDARY CONDITIONS

Appropriate boundary conditions, suggested by the condition that the random walk stops when it first hits either 0 or a are

$$
\begin{aligned}
& F_{a}(0,0)=F_{\alpha}(a, 0)=1 \\
& F_{a}\left(i^{a}, 0\right)=0, i=1,2, \ldots, a-1 \\
& F_{a}(0, n)=F_{a}(a, n)=0, n \quad 0 .
\end{aligned}
$$

A path which begins at $0<i<a$ must in one step go to either $i-1$ or $i+1$. For this reason, we have a recurrence relation for the number of paths:

$$
F_{a}(i, n)=F_{a}(i-1, n-1)+F_{a}(i+1, n-1), n>0,0<i<a .
$$

3. EXAMPLES OF RECURRENCE RELATIONS AND ABSORPTION SEQUENCES

TABLE 1. $F_{5}(i, n)$

i	0	1	2	3	4	5	6	7	8	9	10	11	12
5	1	0	0	0	0	0	0	0	0	0	0	0	0
4	0	1	0	1	1	2	3	5	8	13	21	34	55
3	0	0	1	1	2	3	5	8	13	21	34	55	89
2	0	0	1	1	2	3	5	8	13	21	34	55	89
1	0	1	0	1	1	2	3	5	8	13	21	34	55
0	1	0	0	0	0	0	0	0	0	0	0	0	0

The entries in each row are the beginning of an absorption sequence. Absorption at 0 or 5.

TABLE 2. $F_{9}(i, n)$

i	0	1	2	3	4	5	6	7	8	9	10	11	12
9	1	0	0	0	0	0	0	0	0	0	0	0	0
8	0	1	0	1	0	2	0	5	1	14	7	42	34
7	0	0	1	0	2	0	5	1	14	7	42	34	132
6	0	0	0	1	0	3	1	9	6	28	27	90	109
5	0	0	0	0	1	1	4	5	14	20	48	75	165
4	0	0	0	0	1	1	4	5	14	20	48	75	165
3	0	0	0	1	0	3	1	9	6	28	27	90	109
2	0	0	1	0	2	0	5	1	14	7	42	34	132
1	0	1	0	1	0	2	0	5	1	14	7	42	34
0	1	0	0	0	0	0	0	0	0	0	0	0	0

The entries in eqch row are the beginning of an absorption sequence. Absorption at 0 or 9 .
(a) $F_{3}(1, n)=F_{3}(2, n)=1, n>0$.
(b) $F_{4}(1,2 m)=0, F_{4}(1,2 m+1) .=2^{m}, m \geq 0$;
$F_{4}(2,2 m)=2^{m}, m>0, F_{4}(2,2 m+1)=0, m \geq 0$.
(c) Let F_{n} represent the well-known Fibonacci number sequence [1]:

$$
F_{1}=1, F_{2}=1, \ldots, F_{n+1}=F_{n}+F_{n-1}
$$

in general. We have

$$
\begin{aligned}
& F_{5}(1, n+2)=F_{5}(2, n+1)=F_{n} \quad(\text { see Table } 1) \\
& F_{5}(1, n)=F_{5}(4, n), F_{5}(2, n)=F_{5}(3, n)
\end{aligned}
$$

by symmetry.
By enumerating, see Table 1 , it is easy to show that (assuming $\alpha=5$ and omitting the subscript)

$$
\begin{aligned}
& F(2,2)=F(2,3)=1 \\
& \begin{aligned}
F(2, n+1) & =F(1, n)+F(3, n) \quad \text { (recurrence relation) } \\
& =F(1, n)+F(2, n) \quad \text { (symmetry) } \\
& =F(2, n-1)+F(2, n) \quad \text { (boundary condition } \\
& \quad \text { for } n>1) .
\end{aligned}
\end{aligned}
$$

The sequence $F(2, n)$ thus satisfies the initial conditions and recurrence relation for the Fibonacci numbers. In the case of $F_{3}(1, n)$, the argument is similar.
(d) $\quad F_{6}(1,2 m)=0, F_{6}(1,2 m+1)=3^{m-1}, m \geq 1$, and $F_{6}(1,1)=1$;
$F_{6}(2,2 m)=3^{m-1}, m \geq 1, F_{6}(2,2 m+1)=0$;
$F_{6}(3,2 m)=0, F_{6}(3,2 m+1)=2 \cdot 3^{m-1}, m \geq 1$, and $F_{6}(3,1)=0$.
(e) Let $\alpha=9$ and omit the subscript.

$$
F(1,1)=1, F(1,2)=0, F(1,3)=1
$$

and

$$
F(1, n)=3 F(1, n-2)+F(1, n-3)-1, n>3 .
$$

$$
F(2,1)=0, F(2,2)=1, F(2,3)=0
$$

and

$$
F(2, n)=3 F(2, n-2)+F(2, n-3)-1, n>3 .
$$

$$
F(3,1)=0, F(3,2)=0, F(3,3)=1
$$

and $F(3, n)=3 F(3, n-2)+F(3, n-3), n>3$. $F(4,1)=0, F(4,2)=0, F(4,3)=0$
and

$$
F(4, n)=3 F(4, n-2)+F(4, n-3)+1, n>3 .
$$

$F(9-i, n)=F(i, n)$ by symmetry.
By enumeration, see Table 2, the initial conditions can be seen to hold as well as the fact that (assuming $\alpha=9$ and omitting the subscript)

$$
F(1,4)=0, F(2,4)=2, F(3,4)=0, \text { and } F(4,4)=1
$$

The recurrence relations therefore hold if $n=4$. For an induction argument assume they all hold for a general value of n.

$$
\begin{aligned}
F(1, n+1) & =F(0, n)+F(2, n)=F(2, n) \\
& =3 F(2, n-2)+F(2, n-3)-1 \quad \begin{array}{l}
\text { (the induction } \\
\text { hypothesis) }
\end{array} \\
& =3 F(1, n-1)+F(1, n-2)-1
\end{aligned}
$$

[for $i>0, F(0, i)=0$.$] Similarly,$

$$
\begin{aligned}
& F(2, n+1)= F(1, n)+F(3, n) \\
&= 3[F(1, n-2)+F(3, n-2)]+F(1, n-3) \\
&+F(3, n-3)-1 \quad \text { (the induction } \\
& \text { hypothesis) }
\end{aligned}
$$

$$
=3 F(2, n-1)+F(2, n-2)-1
$$

In just the same way, it is easy to show that both $F(3, n+1)$ and $F(4, n+1)$ satisfy, respectively, the stated recurrence relation.
(f) Assume $\alpha=10$ and omit the subscript.
$F(1,2 m)=0, F(1,1)=1, F(1,3)=1$, and
$F(1,2 m+1)=4 F(1,2 m-1)-\sum_{k=1}^{m-1} F(1,2 k-1)-1, m>1$.
$F(2,2 m-1)=0, m \geq 1, F(2,2)=1, F(2,4)=2$, and
$F(2,2 m+2)=4 F(2,2 m)-\sum_{k=1}^{m-1} F(2,2 k)-2$.

$$
\begin{aligned}
& F(3,2 m)=0, m \geq 0, F(3,1)=0, F(3,3)=1, \text { and } \\
& F(3,2 m+1)=4 F(3,2 m-1)-\sum_{k=1}^{m-1} F(3,2 k-1)-1, m>1 . \\
& F(4,2 m+1)=0, m \geq 0, F(4,2)=0, F(4,4)=1, \text { and } \\
& F(4,2 m+2)=4 F(4,2 m)-\sum_{k=1}^{m-1} F(4,2 k)+1 . \\
& F(5,2 m)=0, m \geq 0, F(5,1)=0, F(5,3)=0, \text { and } \\
& F(5,2 m+1)=4 F(5,2 m-1)-\sum_{k=1}^{m-1} F(5,2 k-1)+2 . \\
& F_{10}(10-i, n)=F_{10}(i, n), i=1,2,3,4, \text { by symmetry. }
\end{aligned}
$$

In the manner shown in example (e), all of these statements can be verified easily. Because of their length and repetitive nature, this discussion is omitted.

A referee has noted that if $A=\left(\alpha_{i j}\right)$ is the square matrix of order a defined by $a_{i j}=1$ if $|i-j|=1, i \neq 1, i \neq a ; a_{i j}=0$ otherwise, then the nth column X_{n} in the array of absorption sequences is given by

$$
A^{n} X_{0}=X_{n} \text { where } X_{0}=(1,0,0, \ldots, 0,1)^{T}
$$

This approach, as it has been applied to the related problem of counting paths in reflections in glass plates [2], might be used to codify and expand many of the current results. The referee has also made a (apparently correct) conjecture: if p is a prime and $\alpha=2 p$, then p divides $F_{2 p}(i, n)$ for $n \geq(p+1)$ and $0 \leq 1 \leq 2 p$.

4. RESULTS FOR SEQUENCES USING PROBABILISTIC REASONING

To illustrate what results follow from the connection between absorption sequences and probability, let us use the Fibonacci number sequence, F_{n}, which appears in example 3(c). Similar results can be found for any absorption sequence.
(a) The probability that absorption at one of the boundaries will take place is one [2, p. 345]. In the case where zero and five are the boundaries, $F_{5}(2, n)$ represents the number of paths that begin at two, and end at zero or five in n steps. If a "win" or a "loss" is equally likely, then the probability that the game is over in n steps is $2^{-n} F_{5}(2, n)$. Hence,

$$
\sum_{n=1}^{\infty} 2^{-n} F_{5}(2, n)=1 \quad \text { or } \quad \sum_{n=2}^{\infty} 2^{-n} F_{n-1}=1
$$

(b) The expected duration of play in the equally likely case is given, in general, by the formula $i(a-i)$ [2, p. 349]. It is also given in this example by

$$
\sum_{n=2}^{\infty} n 2^{-n} F_{5}(2, n)
$$

from the definition of expected value. We have then, with $\alpha=5$ and $i=2$,
that for the Fibonacci sequence

$$
\sum_{n=2}^{\infty} n 2^{-n} F_{n-1}=6
$$

(c) In a formula attributed to Lagrange [2, p. 353] for the equally likely case with absorptions at 0 or 5 , the probability of ruin (or absorption at zero) on the nth step is given as

$$
\begin{array}{r}
u(i, n)=\frac{1}{5} \sum_{\nu=1}^{4}\left(\cos \frac{\pi \nu}{5}\right)^{n-1} \sin \frac{\pi \nu}{5} \sin \frac{\pi i \nu}{5} \\
i=1,2,3,4, \text { and } n>0
\end{array}
$$

In this formula, if $(n-i)$ is odd, $u(i, n)=0$, as seems logical in terms of the random walk formulation as well as in light of trigonometric identities. If ($n-i$) is even,

$$
u(i, n)=\frac{2}{5}\left[\left(\cos \frac{\pi}{5}\right)^{n-1} \sin \frac{\pi}{5} \sin \frac{\pi i}{5}+\left(\cos \frac{2 \pi}{5}\right)^{n-1} \sin \frac{2 \pi}{5} \sin \frac{2 \pi i}{5}\right]
$$

Since, furthermore, each path of length n has probability 2^{-n}, the number of paths of length n involved is $2^{n} u(i, n)$. In particular, if $i=3, n=2 m+1$, then $2^{2 m+1} u(3,2 m+1)$, which, as shown above, is the Fibonacci number $F_{2 m}$. We obtain a trigonometric representation for "one-half" the Fibonacci numbers:

$$
F_{2 m}=\frac{2^{2 m+2}}{5}\left[\left(\cos \frac{\pi}{5}\right)^{2 m} \sin \frac{\pi}{-} \sin \frac{3 \pi}{5}+\left(\cos \frac{2 \pi}{5}\right)^{2 m} \sin \frac{2 \pi}{5} \sin \frac{6 \pi}{5}\right]
$$

$$
m=1,2,3, \ldots
$$

To use Lagrange's probability of ruin formula for the rest of the Fibonacci numbers, the number of paths that begin at 2 and are absorbed at 0 in 2 m steps for $m>0$ is, as indicated above, $F(2,2 m)$ or $F_{2 m-1}$. Therefore, we have $2^{2 m} u(2,2 m)=F_{2 m-1}$ or

$$
F_{2 m-1}=\frac{2^{2 m+1}}{5}\left[\left(\cos \frac{\pi}{5}\right)^{2 m-1} \sin \frac{\pi}{5} \sin \frac{2 \pi}{5}+\left(\cos \frac{2 \pi}{5}\right)^{2 m-1} \sin \frac{2 \pi}{5} \sin \frac{4 \pi}{5}\right]
$$

$$
m=1,2,3, \ldots
$$

Using trigonometric identities, these two formulas combine into one new trigonometric representation of the Fibonacci numbers.

$$
F_{n}=\frac{2^{n+2}}{5}\left(\cos \frac{\pi}{5}\right)^{n} \sin \frac{\pi}{5} \sin \frac{3 \pi}{5}+\left(-\cos \frac{2 \pi}{5}\right)^{n} \sin \frac{2 \pi}{5} \sin \frac{6 \pi}{5}, n>0
$$

(d) By using the method of images, repeatedly reflecting the path from the end points [2, p. 96], it is possible to show that in the random walk beginning at 3 with absorption at 0 or 5, the number of paths that arrive at 1 in ($n-1$) steps hitting neither 0 nor 5 is given by

$$
\sum_{k}\left[\left(\frac{n+10 k+1}{2}\right)-\left(\frac{n+10 k+3}{2}\right)\right]
$$

where the sum extends over the positive and negative integers k with the convention that the "binomial coefficient" $\binom{n}{x}$ is zero whenever x does not equal
an integer between 0 and n. (This sum has a finite number of n-zero terms.) With $n=2 m+1$, it follows that the number of paths which are absorbed at 0 in $2 m+1$ steps is

$$
F(3,2 m+1)=F_{2 m}=\sum_{k}\left[\binom{2 m}{m+5 k+1}-\binom{2 m}{m+5 k+2}\right] .
$$

To obtain the "other half" of the Fibonacci numbers, we count

$$
F_{2 m-1}=F(2,2 m),
$$

the number of paths that begin at 2 and are absorbed at 0 in $2 m$ steps. The method of repeated reflections gives us

$$
F_{2 m-1}=\sum_{k}\left[\binom{2 m-1}{m+5 k}-\binom{2 m-1}{m+5 k+1}\right]
$$

the sum extending over all positive and negative integers.
Two slightly different representations of the Fibonacci numbers can now be obtained through use of the easily verified relations

$$
\binom{2 m}{m+5 k+1}-\binom{2 m}{m+5 k+2}=\frac{10 k+3}{2 m+1}\binom{2 m+1}{m+5 k+2}
$$

and

$$
\binom{2 m-1}{m+5 k}-\binom{2 m-1}{m+5 k+1}=\frac{5 k+1}{m}\binom{2 m}{m+5 k+1}
$$

where k is any integer, m is a positive integer, and the conventions for the binomial coefficients introduced above continue to apply. By direct substitution, we obtain

$$
F_{2 m}=\sum_{k} \frac{10 k+3}{2 m+1}\binom{2 m+1}{m+5 k+2} \quad \text { and } \quad F_{2 m-1}=\sum_{k} \frac{5 k+1}{m}\binom{2 m}{m+5 k+1}
$$

Finally, by treating the terms with positive k separately from those with negative k, we obtain

$$
\begin{aligned}
F_{2 m} & =\frac{1}{2 m+1}\left\{\sum_{k=0}^{r}(10 k+3)\binom{2 m+1}{m+5 k+2}-\sum_{k=1}^{s}(10 k-3)\binom{2 m+1}{m+5 k-1}\right\}, \\
F_{2 m+1} & =\frac{1}{m}\left\{\sum_{k=0}^{r}(5 k+1)\binom{2 m}{m+5 k+1}-\sum_{k=1}^{t}(5 k-1)\binom{2 m}{m+5 k-1}\right\} \\
r & =\left[\frac{m-1}{5}\right], \quad s=\left[\frac{m+2}{5}\right], \quad t=\left[\frac{m+1}{5}\right]
\end{aligned}
$$

with [] the greatest integer in x, and the convention that a sum is zero if its lower limit exceeds its upper limit.

REFERENCES

1. R. A. Brualdi. Introductory Combinatorics. New York: North-Ho1land, 1977. Pp. 90-96.
2. W. Feller. An Introduction to Probability Theory and Its Applications. Vo1. I; 3rd ed., rev. New York: Wiley, 1968.
