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1.  INTRODUCTION

There are three parts to this paper, the link being {w,}, defined below
in (1.1). In the first, a lacunary recurrence relation is developed for {w,}
in (2.3) from a multisection of a related series. Then a functional recur-
rence relation for {w,} is investigated in (3.2). Finally, a g-series recur-
rence relation for {w,} is included in (4.5).

The generalized sequence of numbers {w,} is defined by

(1.1) Wy = PWp-g = QW,_, (B> 2), Wy =a, w, =D,

where p,q are arbitrary integers. Various properties of {w,} have been de-
veloped by Horadam in a series of papers [4, 5, 6, 7, and 8].

We shall have occasion to use the '"fundamental numbers," U,(p,q), and
the "primordial numbers," V, (p,q), of Lucas [10]. These are defined by

(1.2) Up,(psq) = wa(0,15p,9),

1t

(1.3) V,(,q9) = w,(2,p3p,q) .
For notational convenience, we shall use
(1.4) Un(sq) E U = tup1 = (@" - B")/(a - B),

vV, = Up-1=a"* + Bn,

11

(1.5) Vy(p>q)
where o,B are the roots of z? - px + g = O.

2. LACUNARY RECURRENCE RELATION

We define the series w(x) by
(2.1) wx) = wy(x) = anx”,
n=0

the properties of which have been examined by Horadam [4].
If » is a primitive mth root of unity, then the kth m-section of w(x)
can be defined by

m
(2.2) wy (x3m) = m™t Zw(rjx)rm'kj.
=1

It follows that

m=2k

w, (3m) = %(rm‘kw(rx) +r w(r2x) + oo0 + pHMRy (pMz))

*Submitted ca 1972.
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= wak t w2
= iwk+jmxk+jm (1)
i-o

=D (A I + B(ge)* M)

§=0
= Jakzk(l - aMx™ "t + BRRLK (1 - p"x™) 1
= xk @, - q"w,_ &™) (1 = V2™ + g ™) . (ii)
Hence, by cancelling the common factor x* and replacing x™ by x, we get from
the lines (i) and (ii)
1 - Vyx + q”’x2);wk+jmxj =w - g, _,%.

We then equate the coefficients of x7 to get the lacunary recurrence relation
for {wx,}:

(2.3) Virng = VnWanGG-n T @ VkamG-0 = @ = oy + d 05,0850
where §,, is the Kronecker delta:
Sym=1 m=m, Cum =0 (n#m.
When j is zero, we get the trivial case w; = wy. When j is unity, we get
Wepy = VpWy + Cmek-m =0,

which is equation (3.16) of Horadam [5]. It is of interest to rewrite (2.3)
as

(2.4) Wym = Vnwn(m_l) + qnwn(m_z) m>2,n21).
Thus W,, = V,w, +aq”,
and Wy, = Vw,, + q'w,.

The recurrence relations (2.3) and (2.4) are called lacunary because there
are gaps in them. For instance, there are missing numbers between Wy,-;) and
Wpm in (2.4); when m = 2 and n = 3, (2.4) becomes
= 3
wg = Vaw, + ag”,

and the missing numbers are w, and w;. A general solution of (2.4), in terms
of w,, is
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(2.5) Wnp = Up Uy s=qQdwp + alp-1 (Vy s=q)q" .
The proof follows by induction on m. For m = 2 from (l.1) and (1.2),
Uy(Vys-q) =V, and Uy (V,,-q) = 1.
If we assume (2.5) is true form = 3, 4, ..., » — 1, then from (2.4)
Won = VaWu-1y) + @ Wn o2y
VoUp o a (W s=@uy + alVyUs_; (Vs ,-q)q"
+ @ Up Uy 5=y + aq"Up_5(Vy 5=9)q "
VU1V 5=q) + U, (V, 5=q) w0y,
+a(VuUp_, (V,5=q) + q"U,_3(V, =) )q"
Up (Ve s=qdwy, + alp_1 (V, 5=q)q"-

3. FUNCTIONAL RECURRENCE RELATION

Following Carlitz [l], we define

(3.1) wE@) = wi,A) = Zw,ﬁk(i)xk.
k=0
Then, wr(0) =w,, and
* = L\ k
(3.2) W, ., (@) = an+k+1<k>>\
k=0

i Py sk - qwn+k+1)<;z>)\k
k=0

pw:t(x) - qw;‘l‘-l(x) s

which is a second-order functional recurrence relation. Moreover, we can
show that the power series in (3.1) converges for a sufficiently small A as

follows:
o) - @)
Aiz"n”(k S
k=1

Agw“kﬂ(i)xk

N 41 () -

wie + 1) - wi(x)

If we use w, = Aa”™ + BBR", where

b - aB and B_aon—b

A=cx—B T a-RB°




19791 SPECIAL RECURRENCE RELATIONS 297

then we get that

o

5 frr(gar + o))

k=0

il

w, (x)

Ao (1 + da)® + BR™(1 + AR)=.

It follows that
wix +y) =Aa"(1 + A)"FY + BB + AB)*HY

= ﬁi:{Aa”+k(l + Aa)® + BR(1 + AB)”}(%)Ak

k=0

Similarly, we have for E = pab - qa® - b*, and E, = 1 + pX + gA%:

wy_ @y, @) - wi? @)

{Au”‘l(l +2a)® +BRTTN + AB)x}{Au”+l(l + x)® + BR™MTI(1 + AB)x}
- {Aa"(l + Aa)*® + BR™(1 + AB)x}

EA"2@" 187 - 208" 4+ o"TIRTTH(( + A) (1 + AR))T

il

~1p -2 2 2
q" Ed*(B* - 208 + o*)E]
= q" EE],
which is a generalization of equation (4.3) of Horadam [5]:
2 _ n-1
-w, =q 'E.

wn—lwn+l

The same type of approach yields
avg, @+ y) + (B - PRy 1 (& + Y) = w (@)W, () - quy,_(Dwy 1Y)
as a generalization of Horadam's equation (4.1) [5]:
Wppn + B = PPWpip -1 = Wply = Gy W1+

L, g-SERIES RECURRENCE RELATION

g-series are defined by
(4.1) (@p = (1L -@ =g «-o (L=g", (g =1

Arising out of these are the so-called g-binomial coefficients:

4.2) 7], - @ /@@
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When ¢ is unity, these reduce to the ordinary binomial coefficients. It also
follows from (4.1) and (4.2) that

[”] S CRE €770 NETERN CRE Vi) it
B/a (]- - B/O!«)(l - (B/O{,)z) v (1 — (B/u)k)

Uy _qUy_9g = U, _
oLk(”"k) n-1%n-2 n-k

uoul o s uk—l

Uncnk OLk(n _k)’

Uy oUp-3 = Un-k

(4.3) e = Uglhy o+ Up_q

Horadam [5] has shown that

Wy 4p = Wylp — qQWp Uy, 1.
Thus 5
k(k-n-1 k-
wpoien - [n + l} _ qup 10 n]
Bla B/a

w.
Cn -1,k k an k

n+r =

which yields
- n+1 - n
(4:5) Cpo1,xCrkWn-p = ot an[: k ]B/a Ve T qak(k n)cn'lrk[k]ﬂla Ur-1°

5. CONCLUSION

The g-series analogue of the binomial coefficient was studied by Gauss,
and later developed by Cayley. Carlitz has used the g-series in numerous
papers. Fairly clearly, other results for w, could be obtained with it just
as other properties of the functional recurrence relation for w, could be
readily produced.

The process of multisection of series is quite an old one, and the in-
terested reader is referred to Riordan [11]. Lehmer [9] discusses lacunary
recurrence relations.

Cnk was dintroduced by Hoggatt [3], who used the symbol (. Curiously
enough, Gould [2] also used the symbol 'C' in his generalization of Bernoulli
and Euler numbers. Gould's ¢ = b/a (a,b the roots of > - x - 1 = 0) is re-
lated to Hoggatt's C = Cyx when p = -q = 1 by

G.1 C=bHn Cripxr1/Crid-
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ABSTRACT

Two theorems are presented which generalize a recent Wang [6]-Carlitz
[1] result. 1In addition, we also obtain its Abel analogue. The method of
proof is dependent upon some of our recent work [2].

I
Wang [6] proved the expansion
41 . +2r + 1
. n r
(1.1) (" ) e +1)=< )
; k il"";i,fn m=1 n 2r + 1

1j>0

Recently, Carlitz [1] extended (1.1) to

r+1 %k .
r + 1 in Tt a n+ar +r +a
(1.2) IR AL I DRI | [ I )
k=0 iybeerti=n m=1 m
;>0

Theorems 1 and 2 in this paper treat a number of different generalizations of
(1.2). 1In particular, a special case of Theorem 1 gives the new expression:

fony

r

k . .
r+ 1 ___jg;j;}z____<a + tiy + Ty
Z( k > i1+--~z+:ik=n ﬂl (a+ 1+ ti,) T
ij>o

b
o

(1.3)

_ (a+ D@ + 1) ar+r +a+tn+n
T @+ D@E+1) + tn < n )'

Letting £ = 0 in (1.3) yields (1.2).



