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To prove the stronger result that if
{v,} = {w,} for any n,m, then {v,} = {w,} for all n,m,

it would be necessary to replace "small" with 'large" in the enunciation of
Theorem 3. This would require S to be a prime ideal which could be achieved
by embedding S in a maximal ideal MaB which could be proved prime. However,
this would then require restrictions on p' and ¢’ as it would be easy to show
that q'vy_; € S but it would not automatically follow that v,_; € S.

Another problem that might be worth investigating is to look for commu-
tators for relations like
w5+1 - wf - wﬁ_l, where p is a prime.

These could be useful in Lie algebras.
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1. INTRODUCTION
If Poys Ppys +++»> Ppp are distinct integers for positive r, let
W= wWphys oves Py )

be the set of integer sequences
(r) () () (r)
{Wsn } = {WSO > Wel's Wga's "'}

which satisfy the recurrence relation of order »r,

AT (s =1,2,...,r), n>1.

r
(€D _ J+1 ()
(1.1) Wgmen = 2 (<17 "B W
J=1
This is a generalization of of {W;ﬁ)} studied in detail by Horadam [1, 2, 3,
4, 57.

Hilton [6] partitioned Horadam's sequence into a set F of generalized
Fibonacci sequences and a set L of generalized Lucas sequences. We extend
this to show that w can be partitioned naturally into »r sets of generalized
sequences.
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2. NOTATION

We define r sequences of order r, {Vé:)} (s =1, 2, ..., r) by

r

@ 1-sx~ ()
(2.1) Ve =d }:lAsj o, m>1,
&

where the o,; are the distinct roots of

r
k+1 -
(2.2) a® =y (D" p a7k
k=1
and
d = det D
where D is the Vandermonde matrix
1 1 1 i
Or1 Or2 cee Opp
D = ,
2
aZy as; B 5
r-1 r-1 r-1
Oy Oy Opp

(r)
and the 4g; are suitable constants that depend on the initial values of the
sequence:

{Vs(,f)} € Wy » Prgs ++e» Pyp)-

r
Proof: Vs(f'n)” = dl‘SZA;;)u;,‘f"
T -
= dl-s;AsJ' OLZJ' Zl(_l)k+1prk u?j_k
= J k+1 ksl-s (2 +r -k

r

k+1
Z (-1) P V,(:lr—k’ as required.
k=1

8

3. THE PARTITION OF w(Byy , ..., P,

(r)

It follows from (2.1) that we can represent T/;',‘,: by

r
v =d Ty B Ral (=1, 2, ..., 1)
i=1

so that
(r) _ ,(»
By =4

and VI,(:) can be put in the form of any of the Vs(nr). For example, when ¢ = 3,
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V(I’) _ 3 rzB(r) n'
has the form of

() 3-r (€]
Vr-Z,n =d ZAI‘ 2,4 ;L'J

We shall now consider the derivation of one sequence from another, so
that in what follows the results hold for any of the r sequences. Thus there
are »r such partitions.

(r)

We say that Wg,  is in Fibonacci form when it is represented as in

(3.1) v - ZAI,J%J ld| # 1

and in Lucas form when it is represented as in

r
(3.2) Waw) = D Begaly  ldl #1
j=1
where the Bpj are different constants from the A,;. This is analogous to

Hilton. To continue the analogy, one can see from (2.1) that there are »
such forms which correspond to the distinct values of s. When Ws(,f is in
Fibonacci form we may perform an operation (') to obtain a number

@)’
Wsn

(r) !
Z Byj “ra
(r)'

We say (like Hilton) that the sequence {Wsn

where

} is derived from the sequence
{wéﬁ)}. Throughout this paper we assume that |d| is not unity, because when
d is unity the essential distinction between (3.1) and (3.2) breaks down.

There would still be » partitions, provided the A( 7)

of Equation (2.1) are
distinct for all values of s, but the groups of sequences would have the ba-

sic Lucas form. Now

(r)’ (r)
Wen ZAPJ Orj = < ZAI’J m) = gy

and so W«S(:ll) =d W(r), which corresponds to Hilton's Theorem 1.
It follows from (3.1) and Jarden [7] that

Dg = dyj
T
T’I‘]

where a=[A,, 4 A

v Lo @ 17
and Q‘[Wso’wsl""’wsrl]'

P25 e
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So a=dp tw
in which
dp' = [dpk]
is the matrix with dpc in row p and column K, where
+K
dex = (-1)° IT (pm = am) Z Orm, O ym, © Opm, -
p#tm,n mEp
m>n
For r = 2,
-
1 1 " 1 a,, -1
D = , D =3
Qpp Oy “0,, 1
where d = Oyp = Oy
For » = 3, _
1 1 1
D= laz;  az, 034,
2 2 2
O3y  G3, Ogy
D1 = _1_0‘330L32(O‘33 ag,)s =(ay, tag,) 0y, = og,)s (g, = 0g,)
d etc
where d = (a,, = a3;)(a;; = a5;) (0, - 0y,)
For » = 4,
- ! — b
1 1 1 1 dy, dy, dyy dy,
o
1 _
D = , D! =%
OL12+1 etc. etc.
3
o i |
where d = (a,,-0a, )(a,,-a, ), -a,,) (o, , o, ), —a,,) (@, —o,,)
dyy = 0,,0,,0,, 00, —a,,) o, ma,,) (@, - ay,,)
dyp = =(ay,0,, to, 0, to,,0,) (@, -0,,)(,, —0,,) (0, —a,,)
dyy = Coy, to,,+a,,) (o, —o,,) (a,, —a,,) (o, —a,,)
dyy = (o, ma,,) (o, —a,,) (o, —a,,)-
From g = dD"'w, we have
S @) @' _ -
r n
App = O dpcHanoy and  Wan) =3 Agals,
K=1 p=1
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SO

r r
CON )
(3.3) Wen = Z Z dDKOL;‘lOWs(,i-l
p=1k=1

which is effectively a generalization of Equations (2) and (3) of Hilton.
Suppose

{Xs(.:)} and {Y;:)} € WPpy s wocs Ppp)

and that
@ =y =0, 2, ...
Since
d%.(lf’) - y(r) ,
r r
(3.4) r =Y Y dpealx )L, from (3.3)
and p=1k=1
2x = ar ™
r r
(3.5) = Z j’: deaﬁst(fg_l, from (3.4).
p=1k=1

(3.5) is a generalization of Theorem 2(i) of Hilton.
The analogue of Theorem 2(ii) of Hilton can be stated as:

it {00} ¢ uCs cons s @] D el A <
P K
then {Ws(;)} = {Xs(ﬁ)'} for some {X;:)} € W(Ppys =vo> Ppple

Proog: 1f {Xs(,f)} € Wpys «oer Pyup)s

then XS0 = 30D doeall X Ty, from (3.3).
0 K
if Xé.:) = d_ZZp:XK:dOKa;LpWs(,IQ—l’ n < r,
then XS(:)’ = % ZdeKu;‘pWs(i)_l, n < r,
P K
but Ws(:) = % Zp:ZdeKO‘;DWs(,?-l’ n < p.
So ax & = wl for n <,

from which the result follows.
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L. THEOREMS

The basic linear relationships between {Xs(:)} and {YB(,I:)} are described
in the following theorem.

Theorem A: The following are equivalent:

(4.1) {Xs(,f)'} = {ys(,f)}
r

(4.2) -Ys(rrz+m = Z denarp 8(12-4-!( 1 for all n > 0,
} r 11'

(4.3) &= diz Z o Om Y, 1, for all m > 0.

Proog: TFor each of (4.2) and (4.3) we need only require that the expression
is true for r adjacent values of #n.

(4.1) = (4.2);
if {Xs(,f’)'} - {ys(,f)},,

then 3(12 Z Z chK()Ll,.pXH(l"K _1» from (3.3).

Thus (4.2) is true for n =0. Let ¢ > r and assume (4.2) is true for 0<n <t.

j+1
7" -1 P 7B s from (1.1),

g, t+m

'M*

1

Q,
"

] b“ﬂ%

Jj=1p=1K

ZdKOLI‘DZ< l) P XS(P‘Z -J+Kk -1

K=1

~ 5 Ftl, @

r
E ZdDK“gP(_l) Prj Xs,t - j 4k -1
r

M's

°
[}
[

°M

Aok Ogip Xg t+|< 1, as required.
Similarly, (4.3) follows if we use (3.3) and induction.

(4.3) = (4.1);

since Xs(rl:) zLde%st k-1, for n <r,

it follows from the generalization of Hilton's Theorem 2(ii) that

r)'y _ (r)
{Xsn }_{Ye:}'

Similarly, it can be shown that (4.2) => (4.1). This completes the proof of
Theorem A.
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We now describe a partition of wW(P,y, ..., Ppn). If
)
{Ws(,f € WPy s ++vs Pup),
let Ws(;) = g2 wg’;? for all n > 0 where m > 0 is an integer,

) 2 (r)
{w;;}ew and d* | wsf;

for at least one n > 0. Then, for ldil 41,
()
{Wsn } e L,

if g2 ,;;dw,@pwgz_l, for all n, 0 <n < r;

{Ws(:)} eEF,
if 42 *EZdQKa?pwéf‘g_l, for at least one n, 0 < n < »r.
0 K

In view of Theorem A, if {Ws(:)} is a member of F (or L), then any "tail"

of WS(,f) is also a member of F (or L), respectively. Note that this parti-
tion of WSE,LP)} is not unique, since in terms of (2.1) L corresponds to s = 1

and F corresponds to s = 2. We could proceed with similar partitions for
s =13, ..., r, but they do not tell us anything essentially new.

Theonem B: {Xs‘,f)} e Fiff {Ys(f;)} € L.
Proog: (1) 1If {Xs(:)} e F, suppose that

Xs(:) = dzmx‘gi) for all n > 0,
where m > 0 is an integer, and

{xé,f)} € F and d° lxéfl) for at least one n > 0.

Clearly d? [xéé') , or d? *xs(‘f) s ee., Or d? Xxs(i?__l. By Theorem A,
r& =3 dpeal,xEh, for 0 <n < p.
0 K
Let & = @y @ for all > 0.
Then yg) =Z Edp,(on?pxs(f’g_l, 0<n<r.
5 K

Since xéfl’) e F, d° }’ZdeKaﬁpxéf}Z_l for at least one n, 0 < n < r,
o} K

Therefore, d? Iyg) for at least one n, 0 < n < »,
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But it follows from Theorem A that for all n, 0 < n < r,

dzxs(rl;;) = Z delcagpys(,rx)-l'
b K
Therefore {yéz)} € L, and so {y;:)} e L.
(id) If {Yé:)} e L, suppose that
Y‘g) = dzmy;:) for all n > O,
where m > 0 is an integer, and

{y(r)} e L and 4%}y for at least one n > O.
sn -

Clearly d° ,(y(l") or d? ,fygz'lj’ s eees Or d2 ,l’ygr;_l. By Theorem A,

(r) _
Xg' = dzZdeKamyg"i p for 0 <m < r.

Let X“(’Z) = dzmxg;) far all n > O.
) - L
Then éz T g2 ;;deq?pys(fg_l » 0 <n<r.
Since {ya(::)} e L, d° ’ZZ deocgpyéfz_l for all n, 0 < n < r.
0D K

So x(g) s xgrl') s seas xér; 1 are integers and so {acgl)} € w. But

yéz) szpmurp s(roz 1 for all n, 0 <n < »,

and since d? ,{’y(r) , or d? [y(”) , «.., Or 4% Xy(") ,» it follows that
a2 | Zp:zdp’(a;}pxéfg_l for al least one n, 0 < n < r.
K

Therefore {xéi)} € F, and so { g)} € F. This completes the proof of Theorem
B.

At this point, Hilton considered identities obtained from the binomial
theorem. The corresponding application of the multinomial theorem to the
roots Qg of the auxiliary equation seems too complicated to pursue, though
it is possible.

Another approach is to modify the method of Williams [10]: let

e = exp(2iw/r), where 7% = -1,
and as before
r
d= n (Opy = Ok ) -
k=1

J>k
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I1f we let

r-1
_1 (r) k - .
Opj = ;-kEoWkﬂﬂ+ld ek (G=1,2, ..., 7,

then it is shown in Shannon [9] that

r-1
m.oo_ -1 (r) k. -dk
Qpj = 7 kz Wk,n+rd € ’

=0

which seems to be a more useful form than the corresponding multinomial ex-

pression.
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