A NOTE ON THE MULTIPLICATION OF TWO

3×3 FIBONACCI-ROWED MATRICES

A. G. T. BABU
Southern Methodist University, Dallas, TX 75275
and
WEI SHEN HSIA
The University of Alabama, University AL 35486

A Fibonacci-rowed matrix is defined to be a matrix in which each row consists of consecutive Fibonacci numbers in increasing order.

Laderman [1] presented a noncommutative algorithm for multiplying two 3×3 matrices using 23 multiplications. It still needs 18 multiplications if Laderman's algorithm is applied to the product of two 3×3 Fibonaccirowed matrices. In this short note, an algorithm is developed in which only 17 multiplications are needed. This algorithm is mainly based on Strassen's result [2] and the fact that the third column of a Fibonacci-rowed matrix is equal to the sum of the other two columns.

Let $C=A B$ be the matrix of the multiplication of two 3×3 Fibonaccirowed matrices. Define

$$
\begin{aligned}
I & =\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
I I & =a_{23} b_{11} \\
\text { III } & =a_{11}\left(b_{12}-b_{22}\right) \\
I V & =a_{22}\left(-b_{11}+b_{21}\right) \\
\mathrm{V} & =a_{13} b_{22} \\
\mathrm{VI} & =\left(-\alpha_{11}+a_{21}\right) b_{13} \\
\mathrm{VII} & =\left(a_{12}-a_{22}\right) b_{23}
\end{aligned}
$$

Then
$C=\left[\begin{array}{lll}\mathrm{I}+\mathrm{IV}-\mathrm{V}+\mathrm{VII}+a_{13} b_{31} & \mathrm{III}+\mathrm{V}+\alpha_{13} b_{32} & c_{11}+c_{12} \\ I I+I V+\alpha_{23} b_{31} & \mathrm{I}+\mathrm{III}-\mathrm{II}+\mathrm{VI}+a_{23} b_{32} & c_{21}+c_{22} \\ a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+\alpha_{33} b_{32} & c_{31}+c_{32}\end{array}\right]$.
There are only 17 multiplications involved in calculating. However, 18 multiplications are needed if Laderman's algorithm [1] is applied, namely

$$
\begin{aligned}
& m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}, m_{7}, m_{8}, m_{11}, m_{12}, \\
& m_{13}, m_{14}, m_{15}, m_{16}, m_{17}, m_{19}, m_{20}, m_{22}
\end{aligned}
$$

(see [1]). In fact, only 18 multiplications are needed if the usual process of multiplication is applied.

REFERENCES

1. Julian D. Laderman. "A Noncommutative Algorithm for Multip1ying 3×3 Matrices Using 23 Multiplications." BuIl. A.M.S. 82 (1976):126-128.
2. V. Strassen. "Gaussian Elimination Is Not Optimal." Numerische Math. 13 (1969): 354-356.

*

43

