The proof of Theorem 10 is similar to the proof of Theorem 6, except that one needs Theorem 1 to show that $S_3^*(n) = S_2^*(S_2^*(n))$. The rest of the proof is omitted.

An immediate consequence of Theorem 10 is that if we omit the column when n = 0, then every row is a subset of every row preceding it. That is, (17) $\{S_1^*(n)\} \supseteq \{S_2^*(n)\} \supseteq \{S_3^*(n)\} \supseteq \{S_4^*(n)\} \supseteq \{S_5^*(n)\} \dots,$

provided $n \neq 0$.

Using an inductive argument similar to that of Theorem 7, one can show Theorem 11: If $m \ge 1$ is an integer and $n \ne 0$,

$$S_{2}^{*}(S_{m}^{*}(n)) = S_{m}^{*}(S_{2}^{*}(n)).$$

Combining Theorems 10 and 11, we have

(18)
$$S_2^*(S_m^*(n)) = S_m^*(S_2^*(n)) = S_{m+1}^*(n) = S_1^*(S_{m+1}^*(n)), n \neq 0,$$

and

(19)
$$S_3^*(S_m^*(n)) = S_2^*(S_2^*(S_m^*(n))) = S_2^*(S_m^*(S_2^*(n))) = S_2^*(S_{m+1}^*(n)), n \neq 0.$$

Together, (18) and (19) yield

for all integers $m \ge 1$, $n \ne 0$, where C_i^* is the *i*th column of Table 2.

The next result, whose proof we omit, since it is by mathematical induction, establishes a relationship between Table 1 and Table 2.

<u>Theorem 12</u>: If m is an integer, $m \ge 1$, $n \ne 0$, then $S_m^*(n) = S_m(n) - F_m + 1$. Using the fact that $S_2^*(n) = S_2(n)$ in Theorem 10 and applying Theorem

$$S_{m+1}(n) + 1 - F_{m+1} = S_{m+1}^{*}(n) = S_{m}^{*}(S_{2}^{*}(n)) = S_{m}(S_{2}(n)) - F_{m} + 1$$

or (21)

$$S_{m+1}(n) = S_m(S_2(n)) + F_{m-1}, n \neq 0.$$

REFERENCES

- 1. V.E. Hoggatt, Jr. & A.P. Hillman. "A Property of Wythoff Pairs." *The Fibonacci Quarterly* 16, No. 5 (1978):472.
- Ivan Niven. Diophantine Approximations. Tracts in Mathematics, #14. New York: Interscience Publishers of Wiley & Sons, Inc., 1963, p. 34.
- V. E. Hoggatt, Jr., Marjorie Bicknell-Johnson, & Richard Sarsfield. "A Generalization of Wythoff's Game." The Fibonacci Quarterly 17, No. 3 (1979):198-211.

THE APOLLONIUS PROBLEM

F. R. BAUDERT

P.O. Box 32335, Glenstantia 0010, South Africa

On p. 326 of *The Fibonacci Quarterly* 12, No. 4 (1974), Charles W. Trigg gave a formula for the radius of a circle which touches three given circles which, in turn, touch each other externally.

The following is a more general formula:

1980

LETTER TO THE EDITOR

Given triangle ABC with AB = α , BC = β , CA = γ , and circles with centres A, B, and C having radii α , b, and c, respectively.

Let
$$l = a + b + \alpha$$
; $m = b + c + \beta$; $n = \alpha + b - a$; $p = \beta + b - c$;
 $q = a + b - \alpha$; $t = b + c - \beta$; $u = \alpha + a - b$; $v = \beta + c - b$;
 $s = (\alpha + \beta + \gamma)/2$.

Then, if x is the radius of a circle touching the three given ones:

$$4(x + b)\sqrt{s(s - \gamma)} = \sqrt{mp(2x + \ell)(2x + m)} \pm \sqrt{uv(2x + q)(2x + t)}$$

the positive sign being taken if the centre of the required circle falls outside angle ABC, and the negative sign if it falls inside angle ABC.

The formula applies to *external* contact. If a given circle of radius a, say, is to make *internal* contact with the required one, then -a must replace +a in the formula. If a given circle of radius a, say, becomes a point, put a = 0.

When the three given circles touch each other externally,

$$\alpha = a + b, \beta = b + c, \text{ and } \gamma = a + c,$$

and the above formula yields the solution mentioned by Trigg, viz.

 $x = abc/[2\sqrt{abc(a + b + c)} \pm (ab + bc + ca)].$

LETTER TO THE EDITOR

L. A. G. DRESEL

The University of Reading, Berks, UK

Dear Professor Hoggatt,

In a recent article with Claudia Smith [Fibonacci Quarterly 14 (1976): 343], you referred to the question whether a prime p and its square p^2 can have the same rank of apparition in the Fibonacci sequence, and mentioned that Wall (1960) had tested primes up to 10,000 and not found any with this property.

I have recently extended this search and found that no prime up to one million (1,000,000) has this property.

My computations in fact test the Lucas sequence for the property

(1)
$$L_p \equiv 1 \pmod{p^2}$$
 $p = prime.$

For p > 5, this is easily shown to be a necessary and sufficient condition for p and p^2 to have the same rank of apparition in the Fibonacci sequence, because of the identity

(2)
$$(L_p - 1)(L_p + 1) = 5F_{p-1}F_{p+1}.$$

So far, I have shown that the congruence (1) does not hold for any prime less than one million; I hope to extend the search further at a later date. You may wish to publish these results in *The Fibonacci Quarterly*.

Yours sincerely,

[Dr L. A. G. Dresel]
