The proof of Theorem 10 is similar to the proof of Theorem 6，except that one needs Theorem 1 to show that $S_{3}^{*}(n)=S_{2}^{*}\left(S_{2}^{*}(n)\right)$ ．The rest of the proof is omitted．

An immediate consequence of Theorem 10 is that if we omit the column when $n=0$ ，then every row is a subset of every row preceding it．That is， （17）

$$
\left\{S_{1}^{*}(n)\right\} \supseteq\left\{S_{2}^{*}(n)\right\} \supseteq\left\{S_{3}^{*}(n)\right\} \supseteq\left\{S_{4}^{*}(n)\right\} \supseteq\left\{S_{5}^{*}(n)\right\} \ldots,
$$

provided $n \neq 0$ ．
Using an inductive argument similar to that of Theorem 7，one can show Theorem 11：If $m \geq 1$ is an integer and $n \neq 0$ ，

$$
S_{2}^{*}\left(S_{m}^{*}(n)\right)=S_{m}^{*}\left(S_{2}^{*}(n)\right)
$$

Combining Theorems 10 and 11 ，we have

$$
\begin{equation*}
S_{2}^{*}\left(S_{m}^{*}(n)\right)=S_{m}^{*}\left(S_{2}^{*}(n)\right)=S_{m+1}^{*}(n)=S_{1}^{*}\left(S_{m+1}^{*}(n)\right), n \neq 0 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{3}^{*}\left(S_{m}^{*}(n)\right)=S_{2}^{*}\left(S_{2}^{*}\left(S_{m}^{*}(n)\right)\right)=S_{2}^{*}\left(S_{m}^{*}\left(S_{2}^{*}(n)\right)\right)=S_{2}^{*}\left(S_{m+1}^{*}(n)\right), n \neq 0 \tag{19}
\end{equation*}
$$

Together，（18）and（19）yield

$$
\begin{equation*}
C_{S_{m+1}^{*}(n)}^{*} \subseteq C_{S_{m}^{\star}(n)}^{*} \tag{20}
\end{equation*}
$$

for all integers $m \geq 1, n \neq 0$ ，where C_{i}^{*} is the $i t h$ column of Table 2 ．
The next result，whose proof we omit，since it is by mathematical in－ duction，establishes a relationship between Table 1 and Table 2.
Theorem 12：If m is an integer，$m \geq 1, n \neq 0$ ，then $S_{m}^{*}(n)=S_{m}(n)-F_{m}+1$ ．
Using the fact that $S_{2}^{*}(n)=S_{2}(n)$ in Theorem 10 and applying Theorem 12，we have

$$
S_{m+1}(n)+1-F_{m+1}=S_{m+1}^{*}(n)=S_{m}^{*}\left(S_{2}^{*}(n)\right)=S_{m}\left(S_{2}(n)\right)-F_{m}+1
$$

or

$$
\begin{align*}
S_{m+1}(n)= & S_{m}\left(S_{2}(n)\right)+F_{m-1}, n \neq 0 \tag{21}\\
& \text { REFERENCES }
\end{align*}
$$

1．V．E．Hoggatt，Jr．\＆A．P．Hillman．＂A Property of Wythoff Pairs．＂The Fibonacci Quarterly 16，No． 5 （1978）：472．
2．Ivan Niven．Diophantine Approximations．Tracts in Mathematics，非14． New York：Interscience Publishers of Wiley \＆Sons，Inc．，1963，p． 34.
3．V．E．Hoggatt，Jr．，Marjorie Bicknell－Johnson，\＆Richard Sarsfield．＂A Generalization of Wythoff＇s Game．＂The Fibonacci Quarterly 17，No． 3 （1979）：198－211．

み＊みが

THE APOLLONIUS PROBLEM

F．R．BAUDERT

P．O．Box 32335，Glenstantia 0010，South Africa
On p． 326 of The Fibonacci Quarterly 12，No． 4 （1974），Charles W．Trigg gave a formula for the radius of a circle which touches three given circles which，in turn，touch each other externally．

The following is a more general formula：

Given triangle $A B C$ with $A B=\alpha, B C=\beta, C A=\gamma$, and circles with centres A, B, and C having radii α, b, and c, respectively.
Let $\ell=a+b+\alpha ; m=b+c+\beta ; n=\alpha+b-a ; p=\beta+b-c ;$ $q=a+b-\alpha ; t=b+c-\beta ; u=\alpha+a-b ; v=\beta+c-b ;$ $s=(\alpha+\beta+\gamma) / 2$.
Then, if x is the radius of a circle touching the three given ones:

$$
4(x+b) \sqrt{s(s-\gamma)}=\sqrt{n p(2 x+\ell)(2 x+m)} \pm \sqrt{u v(2 x+q)(2 x+t)}
$$

the positive sign being taken if the centre of the required circle falls outside angle $A B C$, and the negative sign if it falls inside angle $A B C$.

The formula applies to external contact. If a given circle of radius α, say, is to make internal contact with the required one, then $-\alpha$ must replace $+\alpha$ in the formula. If a given circle of radius α, say, becomes a point, put $a=0$.

When the three given circles touch each other externally,

$$
\alpha=a+b, \beta=b+c, \text { and } \gamma=a+c,
$$

and the above formula yields the solution mentioned by Trigg, viz.

$$
x=a b c /[2 \sqrt{a b c(a+b+c)} \pm(a b+b c+c a)]
$$

LETTER TO THE EDITOR

L. A. G. DRESEL

The University of Reading, Berks, UK
Dear Professor Hoggatt,
In a recent article with Claudia Smith [Fibonacci Quarterly 14 (1976): 343], you referred to the question whether a prime p and its square p^{2} can have the same rank of apparition in the Fibonacci sequence, and mentioned that Wall (1960) had tested primes up to 10,000 and not found any with this property.

I have recently extended this search and found that no prime up to one million $(1,000,000)$ has this property.

My computations in fact test the Lucas sequence for the property

$$
\begin{equation*}
L_{p} \equiv 1 \quad\left(\bmod p^{2}\right) \quad p=\text { prime } \tag{1}
\end{equation*}
$$

For $p>5$, this is easily shown to be a necessary and sufficient condition for p and p^{2} to have the same rank of apparition in the Fibonacci sequence, because of the identity

$$
\begin{equation*}
\left(L_{p}-1\right)\left(L_{p}+1\right)=5 F_{p-1} F_{p+1} \tag{2}
\end{equation*}
$$

So far, I have shown that the congruence (1) does not hold for any prime less than one million; I hope to extend the search further at a later date. You may wish to publish these results in The Fibonacci Quarterly.

Yours sincerely,
[Dr L. A. G. Dresel]

